Finite elements and fast iterative solvers : with applications in incompressible fluid dynamics /
Saved in:
Author / Creator: | Elman, Howard C. |
---|---|
Imprint: | New York : Oxford University Press, 2005. |
Description: | xiii, 400 p. : ill. ; 24 cm. |
Language: | English |
Series: | Numerical mathematics and scientific computation |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/5700659 |
Table of Contents:
- 0. Models of incompressible fluid flow
- 1. The Poisson equation
- 1.1. Reference problems
- 1.2. Weak formulation
- 1.3. The Galerkin finite element method
- 1.3.1. Triangular finite elements (R[superscript 2])
- 1.3.2. Quadrilateral elements (R[superscript 2])
- 1.3.3. Tetrahedral elements (R[superscript 3])
- 1.3.4. Brick elements (R[superscript 3])
- 1.4. Implementation aspects
- 1.4.1. Triangular element matrices
- 1.4.2. Quadrilateral element matrices
- 1.4.3. Assembly of the Galerkin system
- 1.5. Theory of errors
- 1.5.1. A priori error bounds
- 1.5.2. A posteriori error bounds
- 1.6. Matrix properties
- Problems
- Computational exercises
- 2. Solution of discrete Poisson problems
- 2.1. The conjugate gradient method
- 2.1.1. Convergence analysis
- 2.1.2. Stopping criteria
- 2.2. Preconditioning
- 2.3. Singular systems are not a problem
- 2.4. The Lanczos and minimum residual methods
- 2.5. Multigrid
- 2.5.1. Two-grid convergence theory
- 2.5.2. Extending two-grid to multigrid
- Problems
- Computational exercises
- 3. The convection-diffusion equation
- 3.1. Reference problems
- 3.2. Weak formulation and the convection term
- 3.3. Approximation by finite elements
- 3.3.1. The Galerkin finite element method
- 3.3.2. The streamline diffusion method
- 3.4. Theory of errors
- 3.4.1. A priori error bounds
- 3.4.2. A posteriori error bounds
- 3.5. Matrix properties
- 3.5.1. Computational molecules and Fourier analysis
- 3.5.2. Analysis of difference equations
- Discussion and bibliographical notes
- Problems
- Computational exercises
- 4. Solution of discrete convection-diffusion problems
- 4.1. Krylov subspace methods
- 4.1.1. GMRES
- 4.1.2. Biorthogonalization methods
- 4.2. Preconditioning methods and splitting operators
- 4.2.1. Splitting operators for convection-diffusion systems
- 4.2.2. Matrix analysis of convergence
- 4.2.3. Asymptotic analysis of convergence
- 4.2.4. Practical considerations
- 4.3. Multigrid
- 4.3.1. Practical issues
- 4.3.2. Tools of analysis: smoothing and approximation properties
- 4.3.3. Smoothing
- 4.3.4. Analysis
- Discussion and bibliographical notes
- Problems
- Computational exercises
- 5. The Stokes equations
- 5.1. Reference problems
- 5.2. Weak formulation
- 5.3. Approximation using mixed finite elements
- 5.3.1. Stable rectangular elements (Q[subscript 2]-Q[subscript 1], Q[subscript 2]-P[subscript -1], Q[subscript 2]-P[subscript 0])
- 5.3.2. Stabilized rectangular elements (Q[subscript 1]-P[subscript 0], Q[subscript 1]-Q[subscript 1])
- 5.3.3. Triangular elements
- 5.3.4. Brick and tetrahedral elements
- 5.4. Theory of errors
- 5.4.1. A priori error bounds
- 5.4.2. A posteriori error bounds
- 5.5. Matrix properties
- 5.5.1. Stable mixed approximation
- 5.5.2. Stabilized mixed approximation
- Discussion and bibliographical notes
- Problems
- Computational exercises
- 6. Solution of discrete Stokes problems
- 6.1. The preconditioned MINRES method
- 6.2. Preconditioning
- 6.2.1. General strategies for preconditioning
- 6.2.2. Eigenvalue bounds
- 6.2.3. Equivalent norms for MINRES
- 6.2.4. MINRES convergence analysis
- Discussion and bibliographical notes
- Problems
- Computational exercises
- 7. The Navier-Stokes equations
- 7.1. Reference problems
- 7.2. Weak formulation and linearization
- 7.2.1. Stability theory and bifurcation analysis
- 7.2.2. Nonlinear iteration
- 7.3. Mixed finite element approximation
- 7.4. Theory of errors
- 7.4.1. A priori error bounds
- 7.4.2. A posteriori error bounds
- Discussion and bibliographical notes
- Problems
- Computational exercises
- 8. Solution of discrete Navier-Stokes problems
- 8.1. General strategies for preconditioning
- 8.2. Approximations to the Schur complement operator
- 8.2.1. The pressure convection-diffusion preconditioner
- 8.2.2. The least-squares commutator preconditioner
- 8.3. Performance and analysis
- 8.3.1. Ideal versions of the preconditioners
- 8.3.2. Use of iterative methods for subproblems
- 8.3.3. Convergence analysis
- 8.3.4. Enclosed flow: singular systems are not a problem
- 8.3.5. Relation to SIMPLE iteration
- 8.4. Nonlinear iteration
- Discussion and bibliographical notes
- Problems
- Computational exercises
- Bibliography