Matrix preconditioning techniques and applications /
Saved in:
Author / Creator: | Chen, Ke, 1962- |
---|---|
Imprint: | Cambridge ; New York : Cambridge University Press, 2005. |
Description: | xxiii, 568 p., [8] p. of plates : ill. (some col.) ; 24 cm. |
Language: | English |
Series: | Cambridge monographs on applied and computational mathematics ; 19. |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/5700666 |
Table of Contents:
- Preface
- Nomenclature
- 1. Introduction
- 1.1. Direct and iterative solvers, types of preconditioning
- 1.2. Norms and condition number
- 1.3. Perturbation theories for linear systems and eigenvalues
- 1.4. The Arnoldi iterations and decomposition
- 1.5. Clustering characterization, field of values and [set membership]-pseudospectrum
- 1.6. Fast Fourier transforms and fast wavelet transforms
- 1.7. Numerical solution techniques for practical equations
- 1.8. Common theories on preconditioned systems
- 1.9. Guide to software development and the supplied Mfiles
- 2. Direct methods
- 2.1. The LU decomposition and variants
- 2.2. The Newton-Schulz-Hotelling method
- 2.3. The Gauss-Jordan decomposition and variants
- 2.4. The QR decomposition
- 2.5. Special matrices and their direct inversion
- 2.6. Ordering algorithms for better sparsity
- 2.7. Discussion of software and the supplied Mfiles
- 3. Iterative methods
- 3.1. Solution complexity and expectations
- 3.2. Introduction to residual correction
- 3.3. Classical iterative methods
- 3.4. The conjugate gradient method: the SPD case
- 3.5. The conjugate gradient normal method: the unsymmetric case
- 3.6. The generalized minimal residual method: GMRES
- 3.7. The GMRES algorithm in complex arithmetic
- 3.8. Matrix free iterative solvers: the fast multipole methods
- 3.9. Discussion of software and the supplied Mfiles
- 4. Matrix splitting preconditioners [T1]: direct approximation of A[subscript n x n]
- 4.1. Banded preconditioner
- 4.2. Banded arrow preconditioner
- 4.3. Block arrow preconditioner from DDM ordering
- 4.4. Triangular preconditioners
- 4.5. ILU preconditioners
- 4.6. Fast circulant preconditioners
- 4.7. Singular operator splitting preconditioners
- 4.8. Preconditioning the fast multipole method
- 4.9. Numerical experiments
- 4.10. Discussion of software and the supplied Mfiles
- 5. Approximate inverse preconditioners [T2]: direct approximation of [characters not reproducible]
- 5.1. How to characterize A[superscript -1] in terms of A
- 5.2. Banded preconditioner
- 5.3. Polynomial preconditioner p[subscript k](A)
- 5.4. General and adaptive sparse approximate inverses
- 5.5. AINV type preconditioner
- 5.6. Multi-stage preconditioners
- 5.7. The dual tolerance self-preconditioning method
- 5.8. Near neighbour splitting for singular integral equations
- 5.9. Numerical experiments
- 5.10. Discussion of software and the supplied Mfiles
- 6. Multilevel methods and preconditioners [T3]: coarse grid approximation
- 6.1. Multigrid method for linear PDEs
- 6.2. Multigrid method for nonlinear PDEs
- 6.3. Multigrid method for linear integral equations
- 6.4. Algebraic multigrid methods
- 6.5. Multilevel domain decomposition preconditioners for GMRES
- 6.6. Discussion of software and the supplied Mfiles
- 7. Multilevel recursive Schur complements preconditioners [T4]
- 7.1. Multilevel functional partition: AMLI approximated Schur
- 7.2. Multilevel geometrical partition: exact Schur
- 7.3. Multilevel algebraic partition: permutation-based Schur
- 7.4. Appendix: the FEM hierarchical basis
- 7.5. Discussion of software and the supplied Mfiles
- 8. Sparse wavelet preconditioners [T5]: approximation of [characters not reproducible] and [characters not reproducible]
- 8.1. Introduction to multiresolution and orthogonal wavelets
- 8.2. Operator compression by wavelets and sparsity patterns
- 8.3. Band WSPAI preconditioner
- 8.4. New centering WSPAI preconditioner
- 8.5. Optimal implementations and wavelet quadratures
- 8.6. Numerical results
- 8.7. Discussion of software and the supplied Mfiles
- 9. Wavelet Schur preconditioners [T6]
- 9.1. Introduction
- 9.2. Wavelets telescopic splitting of an operator
- 9.3. An exact Schur preconditioner with level-by-level wavelets
- 9.4. An approximate preconditioner with level-by-level wavelets
- 9.5. Some analysis and numerical experiments
- 9.6. Discussion of the accompanied Mfiles
- 10. Implicit wavelet preconditioners [T7]
- 10.1. Introduction
- 10.2. Wavelet-based sparse approximate inverse
- 10.3. An implicit wavelet sparse approximate inverse preconditioner
- 10.4. Implementation details
- 10.5. Dense problems
- 10.6. Some theoretical results
- 10.7. Combination with a level-one preconditioner
- 10.8. Numerical results
- 10.9. Discussion of the supplied Mfile
- 11. Application I: Acoustic scattering modelling
- 11.1. The boundary integral equations for the Helmholtz equation in R[superscript 3] and iterative solution
- 11.2. The low wavenumber case of a Helmholtz equation
- 11.3. The high wavenumber case of a Helmholtz equation
- 11.4. Discussion of software
- 12. Application II: Coupled matrix problems
- 12.1. Generalized saddle point problems
- 12.2. The Oseen and Stokes saddle point problems
- 12.3. The mixed finite element method
- 12.4. Coupled systems from fluid structure interaction
- 12.5. Elasto-hydrodynamic lubrication modelling
- 12.6. Discussion of software and a supplied Mfile
- 13. Application III: Image restoration and inverse problems
- 13.1. Image restoration models and discretizations
- 13.2. Fixed point iteration method
- 13.3. Explicit time marching schemes
- 13.4. The Primal-dual method
- 13.5. Nonlinear multigrids for optimization
- 13.6. The level set method and other image problems
- 13.7. Numerical experiments
- 13.8. Guide to software and the supplied Mfiles
- 14. Application IV: Voltage stability in electrical power systems
- 14.1. The model equations
- 14.2. Fold bifurcation and arc-length continuation
- 14.3. Hopf bifurcation and solutions
- 14.4. Preconditioning issues
- 14.5. Discussion of software and the supplied Mfiles
- 15. Parallel computing by examples
- 15.1. A brief introduction to parallel computing and MPI
- 15.2. Some commonly used MPI routines
- 15.3. Example 1 of a parallel series summation
- 15.4. Example 2 of a parallel power method
- 15.5. Example 3 of a parallel direct method
- 15.6. Discussion of software and the supplied MPI Fortran files
- Appendix A. A brief guide to linear algebra
- A.1. Linear independence
- A.2. Range and null spaces
- A.3. Orthogonal vectors and matrices
- A.4. Eigenvalues, symmetric matrices and diagonalization
- A.5. Determinants and Cramer's rule
- A.6. The Jordan decomposition
- A.7. The Schur and related decompositions
- Appendix B. The Harwell-Boeing (HB) data format
- Appendix C. A brief guide to MATLAB
- C.1. Vectors and matrices
- C.2. Visualization of functions
- C.3. Visualization of sparse matrices
- C.4. The functional Mfile and string evaluations
- C.5. Interfacing MATLAB with Fortran or C
- C.6. Debugging a Mfile
- C.7. Running a MATLAB script as a batch job
- C.8. Symbolic computing
- Appendix D. List of supplied M-files and programs
- Appendix E. List of selected scientific resources on Internet
- E.1. Freely available software and data
- E.2. Other software sources
- E.3. Useful software associated with books
- E.4. Specialized subjects, sites and interest groups
- References
- Author Index
- Subject Index