Soft multihadron dynamics /

Saved in:
Bibliographic Details
Author / Creator:Kittel, W.
Imprint:Singapore ; Hackensack, NJ : World Scientific, c2005.
Description:xv, 652 p. : ill. ; 24 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/5710338
Hidden Bibliographic Details
Other authors / contributors:De Wolf, E. A.
ISBN:9812562958
Notes:Includes bibliographical references and index.
Table of Contents:
  • 1. Total Cross Sections and Diffraction
  • 1.1. Introduction and synopsis
  • 1.2. Preliminaries
  • 1.2.1. DIS kinematics and cross sections
  • 1.2.2. Regge formalism
  • 1.3. Data on total and elastic cross sections
  • 1.3.1. Energy dependence of hadronic total cross sections
  • 1.3.2. The [gamma]*p total cross section at HERA
  • 1.3.3. Parton densities and the gluon
  • 1.3.4. Elastic scattering
  • 1.4. Inelastic diffraction
  • 1.4.1. Experimental signatures
  • 1.4.2. Hadron-hadron inelastic diffraction
  • 1.4.3. Inclusive diffraction at HERA
  • 1.4.4. Hard diffraction at the Tevatron
  • 1.5. A generic picture of high energy collisions
  • 1.5.1. Unitarity
  • 1.5.2. Elastic diffraction and shrinkage
  • 1.5.3. Inelastic diffraction as a regeneration process
  • 1.5.4. Ioffe time
  • 1.5.5. The Gribov-Feynman parton model
  • 1.6. Models for diffraction
  • 1.6.1. Diffraction and partons: the Miettinen and Pumplin model
  • 1.6.2. Modern QCD models of diffraction
  • 1.7. Summary
  • 2. Inclusive and Exclusive Data Analysis in LPS, Event Shape
  • 2.1. General scheme
  • 2.2. Inclusive LPS analysis and its variables
  • 2.2.1. Longitudinal and transverse momenta
  • 2.2.2. The Feynman variable x
  • 2.2.3. Longitudinal rapidities
  • 2.2.4. The variable [xi]
  • 2.3. Exclusive LPS analysis and its variables
  • 2.3.1. Definitions
  • 2.3.2. Phase-space effects
  • 2.3.3. Kinematics
  • 2.4. Deviations from longitudinal phase space (event shape)
  • 2.4.1. The variables
  • 2.4.2. e[superscript +]e[superscript -] collisions
  • 2.4.3. Lepton-hadron collisions
  • 2.4.4. Hadron-hadron collisions
  • 3. Three-Particle Exclusive Final States
  • 3.1. Shape and energy dependence
  • 3.2. Correlation between transverse and longitudinal variables
  • 3.3. The prism plot
  • 3.4. Isospin analysis
  • 3.5. Partial wave analysis
  • 3.6. Analytical multichannel analysis
  • 3.7. Conclusions
  • 4. Single-Particle Inclusive Distributions
  • 4.1. e[superscript +]e[superscript -] collisions
  • 4.1.1. Longitudinal, transverse and asymmetry fragmentation functions
  • 4.1.2. Leading-particle effect
  • 4.1.3. Charge ordering
  • 4.1.4. The humpbacked shape
  • 4.1.5. The energy evolution of the peak position
  • 4.1.6. The higher moments
  • 4.1.7. The mass dependence of the fragmentation function
  • 4.1.8. Quark- and gluon-jet differences
  • 4.1.9. Hadronic production rates
  • 4.2. Lepton-hadron collisions
  • 4.3. (Early) observations in hadron-hadron collisions
  • 4.3.1. Single-particle (and resonance) inclusive spectra
  • 4.3.2. Particle yields
  • 4.3.3. Reflection of the valence quark distribution
  • 4.3.4. Jet universality
  • 4.4. Conclusions
  • 5. Early Models
  • 5.1. Additive quark model and quark combinatorics
  • 5.1.1. The central region
  • 5.1.2. The fragmentation region
  • 5.2. Quark counting rules and perturbative QCD-based approach
  • 5.2.1. Hard processes
  • 5.2.2. Soft processes
  • 5.2.3. Perturbative QCD diagrams
  • 5.3. The quark recombination model
  • 5.3.1. The idea
  • 5.3.2. Detailed modelling
  • 5.3.3. Specific choices of structure and recombination functions
  • 5.3.4. The valon model
  • 5.3.5. Two-particle distributions
  • 5.3.6. Suppression of valence recombination
  • 5.3.7. The fusion model
  • 5.3.8. Hyperon polarization
  • 5.4. Conclusions
  • 6. Fragmentation Models
  • 6.1. Fragmentation models for e[superscript +]e[superscript -] collisions
  • 6.1.1. The perturbative phase
  • 6.1.2. The hadronization or fragmentation phase
  • 6.2. Deep inelastic collisions
  • 6.3. Soft hadron-hadron collisions
  • 6.3.1. The Lund fragmentation scheme
  • 6.3.2. Dual Parton Models (DPM)
  • 6.3.3. The Fritiof model
  • 6.3.4. A first comparison of Lund, Fritiof and DPM
  • 6.3.5. QFM versus QRM? - Unification Efforts
  • 6.3.6. Parton-based Gribov-Regge theory
  • 6.3.7. Geometrical branching and ECCO
  • 6.4. Conclusions
  • 7. Correlations and Fluctuations, the Formalism
  • 7.1. Definitions and notation
  • 7.1.1. Exclusive and inclusive densities
  • 7.1.2. Cumulant correlation functions
  • 7.1.3. Correlations for particles of different species
  • 7.1.4. Semi-inclusive correlation functions
  • 7.1.5. Factorial and cumulant moments
  • 7.1.6. Combinants
  • 7.1.7. Cell-averaged factorial moments and cumulants; generalized moments
  • 7.1.8. Multivariate distributions
  • 7.2. Poisson-noise suppression
  • 7.3. Sum-rules
  • 7.4. Scaling laws
  • 7.5. Bunching-parameter approach
  • 7.6. The wavelet transform
  • 7.7. Levy stable distributions
  • 8. Final-State Multiplicity
  • 8.1. Full phase space
  • 8.1.1. Average multiplicity and its energy dependence
  • 8.1.2. The shape of the multiplicity distribution and its energy dependence
  • 8.1.3. Higher moments
  • 8.2. Limited phase-space domains
  • 8.2.1. Shape and energy dependence
  • 8.2.2. Negative-binomial fits
  • 8.2.3. Interpretation
  • 8.2.4. Beyond the negative binomial
  • 8.3. Information-entropy scaling
  • 8.4. Rapidity gap probability
  • 8.5. Forward-backward correlations
  • 8.6. Conclusions
  • 9. Experimental Results on Correlations
  • 9.1. Rapidity correlations
  • 9.1.1. Correlations in hadron-hadron collisions
  • 9.1.2. Correlations in e[superscript +]e[superscript -] and [mu superscript +]p-collisions
  • 9.1.3. Quantum number dependence
  • 9.1.4. Charged-particle multiplicity dependence
  • 9.1.5. Transverse momentum dependence
  • 9.2. Azimuthal correlations
  • 9.3. Angular correlations on the parton level
  • 9.4. Correlations in invariant mass
  • 9.5. Three-particle rapidity correlations
  • 9.6. Summary and conclusions
  • 10. Multiplicity Fluctuations and Intermittency
  • 10.1. Prelude
  • 10.2. Normalized factorial moments
  • 10.2.1. The method
  • 10.2.2. Results on log-log plots (in one dimension)
  • 10.2.3. Model predictions
  • 10.2.4. A warning
  • 10.3. Higher dimensions
  • 10.3.1. The projection effect
  • 10.3.2. Transformed momentum space
  • 10.3.3. A generalized power law
  • 10.3.4. Thermal versus non-thermal phase transition
  • 10.3.5. Self-affinity
  • 10.4. Dependences of the intermittency effect
  • 10.4.1. Charge dependence
  • 10.4.2. Rapidity dependence
  • 10.4.3. Transverse-momentum dependence
  • 10.4.4. Dependence on jet topology
  • 10.4.5. Energy and multiplicity (density) dependence
  • 10.5. Factorial cumulants
  • 10.6. Factorial correlators
  • 10.6.1. The method
  • 10.6.2. Results
  • 10.6.3. Interpretation
  • 10.7. Multifractal behavior
  • 10.7.1. Factorial moments of continuous order
  • 10.7.2. Experimental results
  • 10.7.3. Bunching parameters
  • 10.8. Density and correlation strip-integrals
  • 10.8.1. The method
  • 10.8.2. Results
  • 10.8.3. Genuine higher-order correlations
  • 10.8.4. Transverse-momentum and multiplicity dependence (revisited)
  • 10.8.5. Bose-Einstein correlations versus QCD effects
  • 10.9. Analytical QCD predictions
  • 10.9.1. The QCD framework
  • 10.9.2. Two-particle angular correlations
  • 10.9.3. Fluctuations in one- and two-dimensional angular regions
  • 10.9.4. In (transverse-)momentum cut phase space
  • 10.10. Individual Events
  • 10.10.1. Single-event intermittency
  • 10.10.2. Erraticity
  • 10.10.3. Void analysis
  • 10.10.4. Entropy
  • 10.11. Levy stable distributions
  • 10.12. Summary and conclusions
  • 11. Bose-Einstein Correlations
  • 11.1. Pion interferometry
  • 11.1.1. The Lorentz invariant (Goldhaber) form
  • 11.1.2. The Kopylov-Podgoretskii parametrization
  • 11.1.3. Emission function and Wigner function
  • 11.1.4. String models
  • 11.1.5. The strength parameter [lambda]
  • 11.1.6. The reference sample
  • 11.1.7. Coulomb correction
  • 11.2. (Early) results in one dimension
  • 11.2.1. Dependence on energy and type of collision
  • 11.2.2. The multiplicity (or density) dependence
  • 11.2.3. Four types of Monte-Carlo implementation
  • 11.2.4. Conclusions so far
  • 11.3. Other bosons and fermions
  • 11.3.1. The [Pi superscript 0 Pi superscript 0] system
  • 11.3.2. The K[superscript plus or minus]K[superscript plus or minus] system
  • 11.3.3. The K[superscript 0 subscript S]K[superscript 0 subscript S] system
  • 11.3.4. [Lambda superscript 0 Lambda superscript 0]
  • 11.3.5. pp and pp
  • 11.3.6. (Transverse) mass dependence of the radius parameter
  • 11.3.7. Conclusions so far
  • 11.4. Higher-order Bose-Einstein correlations
  • 11.4.1. The formalism
  • 11.4.2. Experimental results
  • 11.4.3. Genuine three-particle correlations
  • 11.4.4. Summary
  • 11.5. The functional form of the correlation
  • 11.6. Multi-dimensional parametrization and shape of the source
  • 11.6.1. Directional dependence
  • 11.6.2. The Bertsch-Pratt Cartesian parametrization [176,177]
  • 11.6.3. The generalized Yano-Koonin-Podgoretskii scheme
  • 11.6.4. The Buda-Lund parametrization
  • 11.6.5. Longitudinal expansion and decoupling time
  • 11.6.6. Duration of pion emission
  • 11.6.7. The transverse flow
  • 11.6.8. The decoupling volume
  • 11.6.9. Examples of models and parametrizations
  • 11.6.10. Combined analysis of two-particle correlations and single-particle spectra
  • 11.6.11. Azimuthally sensitive analysis
  • 11.7. WW overlap
  • 11.8. Modification of multiplicity and single-particle spectra
  • 11.8.1. Density matrix formalism
  • 11.8.2. Independent particle emission
  • 11.8.3. The case of a Gaussian density matrix
  • 11.8.4. Charge ratios
  • 11.9. Conclusions
  • Index
  • Figure Credits