Asset price dynamics, volatility, and prediction /
Saved in:
Author / Creator: | Taylor, Stephen (Stephen J.) |
---|---|
Imprint: | Princeton, N.J. : Princeton University Press, c2005. |
Description: | xv, 525 p. : ill. ; 24 cm. |
Language: | English |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/5723807 |
Table of Contents:
- Preface
- 1. Introduction
- 1.1. Asset Price Dynamics
- 1.2. Volatility
- 1.3. Prediction
- 1.4. Information
- 1.5. Contents
- 1.6. Software
- 1.7. Web Resources
- I. Foundations
- 2. Prices and Returns
- 2.1. Introduction
- 2.2. Two Examples of Price Series
- 2.3. Data-Collection Issues
- 2.4. Two Returns Series
- 2.5. Definitions of Returns
- 2.6. Further Examples of Time Series of Returns
- 3. Stochastic Processes: Definitions and Examples
- 3.1. Introduction
- 3.2. Random Variables
- 3.3. Stationary Stochastic Processes
- 3.4. Uncorrelated Processes
- 3.5. ARMA Processes
- 3.6. Examples of ARMA(1, 1) Specifications
- 3.7. ARIMA Processes
- 3.8. ARFIMA Processes
- 3.9. Linear Stochastic Processes
- 3.10. Continuous-Time Stochastic Processes
- 3.11. Notation for Random Variables and Observations
- 4. Stylized Facts for Financial Returns
- 4.1. Introduction
- 4.2. Summary Statistics
- 4.3. Average Returns and Risk Premia
- 4.4. Standard Deviations
- 4.5. Calendar Effects
- 4.6. Skewness and Kurtosis
- 4.7. The Shape of the Returns Distribution
- 4.8. Probability Distributions for Returns
- 4.9. Autocorrelations of Returns
- 4.10. Autocorrelations of Transformed Returns
- 4.11. Nonlinearity of the Returns Process
- 4.12. Concluding Remarks
- 4.13. Appendix: Autocorrelation Caused by Day-of-the-Week Effects
- 4.14. Appendix: Autocorrelations of a Squared Linear Process
- II. Conditional Expected Returns
- 5. The Variance-Ratio Test of the Random Walk Hypothesis
- 5.1. Introduction
- 5.2. The Random Walk Hypothesis
- 5.3. Variance-Ratio Tests
- 5.4. An Example of Variance-Ratio Calculations
- 5.5. Selected Test Results
- 5.6. Sample Autocorrelation Theory
- 5.7. Random Walk Tests Using Rescaled Returns
- 5.8. Summary
- 6. Further Tests of the Random Walk Hypothesis
- 6.1. Introduction
- 6.2. Test Methodology
- 6.3. Further Autocorrelation Tests
- 6.4. Spectral Tests
- 6.5. The Runs Test
- 6.6. Rescaled Range Tests
- 6.7. The BDS Test
- 6.8. Test Results for the Random Walk Hypothesis
- 6.9. The Size and Power of Random Walk Tests
- 6.10. Sources of Minor Dependence in Returns
- 6.11. Concluding Remarks
- 6.12. Appendix: the Correlation between Test Values for Two Correlated Series
- 6.13. Appendix: Autocorrelation Induced by Rescaling Returns
- 7. Trading Rules and Market Efficiency
- 7.1. Introduction
- 7.2. Four Trading Rules
- 7.3. Measures of Return Predictability
- 7.4. Evidence about Equity Return Predictability
- 7.5. Evidence about the Predictability of Currency and Other Returns
- 7.6. An Example of Calculations for the Moving-Average Rule
- 7.7. Efficient Markets: Methodological Issues
- 7.8. Breakeven Costs for Trading Rules Applied to Equities
- 7.9. Trading Rule Performance for Futures Contracts
- 7.10. The Efficiency of Currency Markets
- 7.11. Theoretical Trading Profits for Autocorrelated Return Processes
- 7.12. Concluding Remarks
- III. Volatility Processes
- 8. An Introduction to Volatility
- 8.1. Definitions of Volatility
- 8.2. Explanations of Changes in Volatility
- 8.3. Volatility and Information Arrivals
- 8.4. Volatility and the Stylized Facts for Returns
- 8.5. Concluding Remarks
- 9. ARCH Models: Definitions and Examples
- 9.1. Introduction
- 9.2. ARCH(1)
- 9.3. GARCH(1, 1)
- 9.4. An Exchange Rate Example of the GARCH(1, 1) Model
- 9.5. A General ARCH Framework
- 9.6. Nonnormal Conditional Distributions
- 9.7. Asymmetric Volatility Models
- 9.8. Equity Examples of Asymmetric Volatility Models
- 9.9. Summary
- 10. ARCH Models: Selection and Likelihood Methods
- 10.1. Introduction
- 10.2. Asymmetric Volatility: Further Specifications and Evidence
- 10.3. Long Memory ARCH Models
- 10.4. Likelihood Methods
- 10.5. Results from Hypothesis Tests
- 10.6. Model Building
- 10.7. Further Volatility Specifications
- 10.8. Concluding Remarks
- 10.9. Appendix: Formulae for the Score Vector
- 11. Stochastic Volatility Models
- 11.1. Introduction
- 11.2. Motivation and Definitions
- 11.3. Moments of Independent SV Processes
- 11.4. Markov Chain Models for Volatility
- 11.5. The Standard Stochastic Volatility Model
- 11.6. Parameter Estimation for the Standard SV Model
- 11.7. An Example of SV Model Estimation for Exchange Rates
- 11.8. Independent SV Models with Heavy Tails
- 11.9. Asymmetric Stochastic Volatility Models
- 11.10. Long Memory SV Models
- 11.11. Multivariate Stochastic Volatility Models
- 11.12. ARCH versus SV
- 11.13. Concluding Remarks
- 11.14. Appendix: Filtering Equations
- IV. High-Frequency Methods
- 12. High-Frequency Data and Models
- 12.1. Introduction
- 12.2. High-Frequency Prices
- 12.3. One Day of High-Frequency Price Data
- 12.4. Stylized Facts for Intraday Returns
- 12.5. Intraday Volatility Patterns
- 12.6. Discrete-Time Intraday Volatility Models
- 12.7. Trading Rules and Intraday Prices
- 12.8. Realized Volatility: Theoretical Results
- 12.9. Realized Volatility: Empirical Results
- 12.10. Price Discovery
- 12.11. Durations
- 12.12. Extreme Price Changes
- 12.13. Daily High and Low Prices
- 12.14. Concluding Remarks
- 12.15. Appendix: Formulae for the Variance of the Realized Volatility Estimator
- V. Inferences from Option Prices
- 13. Continuous-Time Stochastic Processes
- 13.1. Introduction
- 13.2. The Wiener Process
- 13.3. Diffusion Processes
- 13.4. Bivariate Diffusion Processes
- 13.5. Jump Processes
- 13.6. Jump-Diffusion Processes
- 13.7. Appendix: a Construction of the Wiener Process
- 14. Option Pricing Formulae
- 14.1. Introduction
- 14.2. Definitions, Notation, and Assumptions
- 14.3. Black-Scholes and Related Formulae
- 14.4. Implied Volatility
- 14.5. Option Prices when Volatility Is Stochastic
- 14.6. Closed-Form Stochastic Volatility Option Prices
- 14.7. Option Prices for ARCH Processes
- 14.8. Summary
- 14.9. Appendix: Heston's Option Pricing Formula
- 15. Forecasting Volatility
- 15.1. Introduction
- 15.2. Forecasting Methodology
- 15.3. Two Measures of Forecast Accuracy
- 15.4. Historical Volatility Forecasts
- 15.5. Forecasts from Implied Volatilities
- 15.6. ARCH Forecasts that Incorporate Implied Volatilities
- 15.7. High-Frequency Forecasting Results
- 15.8. Concluding Remarks
- 16. Density Prediction for Asset Prices
- 16.1. Introduction
- 16.2. Simulated Real-World Densities
- 16.3. Risk-Neutral Density Concepts and Definitions
- 16.4. Estimation of Implied Risk-Neutral Densities
- 16.5. Parametric Risk-Neutral Densities
- 16.6. Risk-Neutral Densities from Implied Volatility Functions
- 16.7. Nonparametric RND Methods
- 16.8. Towards Recommendations
- 16.9. From Risk-Neutral to Real-World Densities
- 16.10. An Excel Spreadsheet for Density Estimation
- 16.11. Risk Aversion and Rational RNDs
- 16.12. Tail Density Estimates
- 16.13. Concluding Remarks
- Symbols
- References
- Author Index
- Subject Index