Models for discrete longitudinal data /
Saved in:
Author / Creator: | Molenberghs, Geert. |
---|---|
Imprint: | New York ; London : Springer, 2005. |
Description: | xxii, 683 p. : ill. |
Language: | English |
Series: | Springer series in statistics |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/5727308 |
Table of Contents:
- Preface
- Acknowledgments
- I. Introductory Material
- 1. Introduction
- 2. Motivating Studies
- 2.1. Introduction
- 2.2. The Analgesic Trial
- 2.3. The Toenail Data
- 2.4. The Fluvoxamine Trial
- 2.5. The Epilepsy Data
- 2.6. The Project on Preterm and Small for Gestational Age Infants (POPS) Study
- 2.7. National Toxicology Program Data
- 2.8. The Sports Injuries Trial
- 2.9. Age Related Macular Degeneration Trial
- 3. Generalized Linear Models
- 3.1. Introduction
- 3.2. The Exponential Family
- 3.3. The Generalized Linear Model (GLM)
- 3.4. Examples
- 3.5. Maximum Likelihood Estimation and Inference
- 3.6. Logistic Regression for the Toenail Data
- 3.7. Poisson Regression for the Epilepsy Data
- 4. Linear Mixed Models for Gaussian Longitudinal Data
- 4.1. Introduction
- 4.2. Marginal Multivariate Model
- 4.3. The Linear Mixed Model
- 4.4. Estimation and Inference for the Marginal Model
- 4.5. Inference for the Random Effects
- 5. Model Families
- 5.1. Introduction
- 5.2. The Gaussian Case
- 5.3. Model Families in General
- 5.4. Inferential Paradigms
- II. Marginal Models
- 6. The Strength of Marginal Models
- 6.1. Introduction
- 6.2. Marginal Models in Contingency Tables
- 6.3. British Occupational Status Study
- 6.4. The Caithness Data
- 6.5. Analysis of the Fluvoxamine Trial
- 6.6. Extensions
- 6.7. Relation to Latent Continuous Densities
- 6.8. Conclusions and Perspective
- 7. Likelihood-based Marginal Models
- 7.1. Notation
- 7.2. The Bahadur Model
- 7.3. A General Framework for Fully Specified Marginal Models
- 7.4. Maximum Likelihood Estimation
- 7.5. An Influenza Study
- 7.6. The Multivariate Probit Model
- 7.7. The Dale Model
- 7.8. Hybrid Marginal-conditional Specification
- 7.9. A Cross-over Trial: An Example in Primary Dysmenorrhoea
- 7.10. Multivariate Analysis of the POPS Data
- 7.11. Longitudinal Analysis of the Fluvoxamine Study
- 7.12. Appendix: Maximum Likelihood Estimation
- 7.13. Appendix: The Multivariate Plackett Distribution
- 7.14. Appendix: Maximum Likelihood Estimation for the Dale Model
- 8. Generalized Estimating Equations
- 8.1. Introduction
- 8.2. Standard GEE Theory
- 8.3. Alternative GEE Methods
- 8.4. Prentice's GEE Method
- 8.5. Second-order Generalized Estimating Equations (GEE2)
- 8.6. GEE with Odds Ratios and Alternating Logistic Regression
- 8.7. GEE2 Based on a Hybrid Marginal-conditional Model
- 8.8. A Method Based on Linearization
- 8.9. Analysis of the NTP Data
- 8.10. The Heatshock Study
- 8.11. The Sports Injuries Trial
- 9. Pseudo-Likelihood
- 9.1. Introduction
- 9.2. Pseudo-Likelihood: Definition and Asymptotic Properties
- 9.3. Pseudo-Likelihood Inference
- 9.4. Marginal Pseudo-Likelihood
- 9.5. Comparison with Generalized Estimating Equations
- 9.6. Analysis of NTP Data
- 10. Fitting Marginal Models with SAS
- 10.1. Introduction
- 10.2. The Toenail Data
- 10.3. GEE1 with Correlations
- 10.4. Alternating Logistic Regressions
- 10.5. A Method Based on Linearization
- 10.6. Programs for the NTP Data
- 10.7. Alternative Software Tools
- III. Conditional Models
- 11. Conditional Models
- 11.1. Introduction
- 11.2. Conditional Models
- 11.3. Marginal versus Conditional Models
- 11.4. Analysis of the NTP Data
- 11.5. Transition Models
- 12. Pseudo-Likehood
- 12.1. Introduction
- 12.2. Pseudo-Likelihood for a Single Repeated Binary Outcome
- 12.3. Pseudo-Likelihood for a Multivariate Repeated Binary Outcome
- 12.4. Analysis of the NTP Data
- IV. Subject-specific Models
- 13. From Subject-specific to Random-effects Models
- 13.1. Introduction
- 13.2. General Model Formulation
- 13.3. Three Ways to Handle Subject-specific Parameters
- 13.4. Random-effects Models: Special Cases
- 14. The Generalized Linear Mixed Model (GLMM)
- 14.1. Introduction
- 14.2. Model Formulation and Approaches to Estimation
- 14.3. Estimation: Approximation of the Integrand
- 14.4. Estimation: Approximation of the Data
- 14.5. Estimation: Approximation of the Integral
- 14.6. Inference in Generalized Linear Mixed Models
- 14.7. Analyzing the NTP Data
- 14.8. Analyzing the Toenail Data
- 15. Fitting Generalized Linear Mixed Models with SAS
- 15.1. Introduction
- 15.2. The GLIMMIX Procedure for Quasi-Likelihood
- 15.3. The GLIMMIX Macro for Quasi-Likelihood
- 15.4. The NLMIXED Procedure for Numerical Quadrature
- 15.5. Alternative Software Tools
- 16. Marginal versus Random-effects Models
- 16.1. Introduction
- 16.2. Example: The Toenail Data
- 16.3. Parameter Interpretation
- 16.4. Toenail Data: Marginal versus Mixed Models
- 16.5. Analysis of the NTP Data
- V. Case Studies and Extensions
- 17. The Analgesic Trial
- 17.1. Introduction
- 17.2. Marginal Analyses of the Analgesic Trial
- 17.3. Random-effects Analyses of the Analgesic Trial
- 17.4. Comparing Marginal and Random-effects Analyses
- 17.5. Programs for the Analgesic Trial
- 18. Ordinal Data
- 18.1. Regression Models for Ordinal Data
- 18.2. Marginal Models for Repeated Ordinal Data
- 18.3. Random-effects Models for Repeated Ordinal Data
- 18.4. Ordinal Analysis of the Analgesic Trial
- 18.5. Programs for the Analgesic Trial
- 19. The Epilepsy Data
- 19.1. Introduction
- 19.2. A Marginal GEE Analysis
- 19.3. A Generalized Linear Mixed Model
- 19.4. Marginalizing the Mixed Model
- 20. Non-linear Models
- 20.1. Introduction
- 20.2. Univariate Non-linear Models
- 20.3. The Indomethacin Study: Non-hierarchical Analysis
- 20.4. Non-linear Models for Longitudinal Data
- 20.5. Non-linear Mixed Models
- 20.6. The Orange Tree Data
- 20.7. Pharmacokinetic and Pharmacodynamic Models
- 20.8. The Songbird Data
- 20.9. Discrete Outcomes
- 20.10. Hypothesis Testing and Non-linear Models
- 20.11. Flexible Functions
- 20.12. Using SAS for Non-linear Mixed-effects Models
- 21. Pseudo-Likelihood for a Hierarchical Model
- 21.1. Introduction
- 21.2. Pseudo-Likelihood Estimation
- 21.3. Two Binary Endpoints
- 21.4. A Meta-analysis of Trials in Schizophrenic Subjects
- 21.5. Concluding Remarks
- 22. Random-effects Models with Serial Correlation
- 22.1. Introduction
- 22.2. A Multilevel Probit Model with Autocorrelation
- 22.3. Parameter Estimation for the Multilevel Probit Model
- 22.4. A Generalized Linear Mixed Model with Autocorrelation
- 22.5. A Meta-analysis of Trials in Schizophrenic Subjects
- 22.6. SAS Code for Random-effects Models with Autocorrelation
- 22.7. Concluding Remarks
- 23. Non-Gaussian Random Effects
- 23.1. Introduction
- 23.2. The Heterogeneity Model
- 23.3. Estimation and Inference
- 23.4. Empirical Bayes Estimation and Classification
- 23.5. The Verbal Aggression Data
- 23.6. Concluding Remarks
- 24. Joint Continuous and Discrete Responses
- 24.1. Introduction
- 24.2. A Continuous and a Binary Endpoint
- 24.3. Hierarchical Joint Models
- 24.4. Age Related Macular Degeneration Trial
- 24.5. Joint Models in SAS
- 24.6. Concluding Remarks
- 25. High-dimensional Joint Models
- 25.1. Introduction
- 25.2. Joint Mixed Model
- 25.3. Model Fitting and Inference
- 25.4. A Study in Psycho-Cognitive Functioning
- VI. Missing Data
- 26. Missing Data Concepts
- 26.1. Introduction
- 26.2. A Formal Taxonomy
- 27. Simple Methods, Direct Likelihood, and WGEE
- 27.1. Introduction
- 27.2. Longitudinal Analysis or Not?
- 27.3. Simple Methods
- 27.4. Bias in LOCF, CC, and Ignorable Likelihood
- 27.5. Weighted Generalized Estimating Equations
- 27.6. The Depression Trial
- 27.7. Age Related Macular Degeneration Trial
- 27.8. The Analgesic Trial
- 28. Multiple Imputation and the EM Algorithm
- 28.1. Introduction
- 28.2. Multiple Imputation
- 28.3. The Expectation-Maximization Algorithm
- 28.4. Which Method to Use?
- 28.5. Age Related Macular Degeneration Study
- 28.6. Concluding Remarks
- 29. Selection Models
- 29.1. Introduction
- 29.2. An MNAR Dale Model
- 29.3. A Model for Non-monotone Missingness
- 29.4. Concluding Remarks
- 30. Pattern-mixture Models
- 30.1. Introduction
- 30.2. Pattern-mixture Modeling Approach
- 30.3. Identifying Restriction Strategies
- 30.4. A Unifying Framework for Selection and Pattern-mixture Models
- 30.5. Selection Models versus Pattern-mixture Models
- 30.6. Analysis of the Fluvoxamine Data
- 30.7. Concluding Remarks
- 31. Sensitivity Analysis
- 31.1. Introduction
- 31.2. Sensitivity Analysis for Selection Models
- 31.3. A Local Influence Approach for Ordinal Data with Dropout
- 31.4. A Local Influence Approach for Incomplete Binary Data
- 31.5. Interval of Ignorance
- 31.6. Sensitivity Analysis and Pattern-mixture Models
- 31.7. Concluding Remarks
- 32. Incomplete Data and SAS
- 32.1. Introduction
- 32.2. Complete Case Analysis
- 32.3. Last Observation Carried Forward
- 32.4. Direct Likelihood
- 32.5. Weighted Estimating Equations (WGEE)
- 32.6. Multiple Imputation
- 32.7. The EM Algorithm
- 32.8. MNAR Models and Sensitivity Analysis Tools
- References
- Index