Inference in hidden Markov models /

Saved in:
Bibliographic Details
Author / Creator:Cappé, Olivier.
Imprint:New York : Springer, c2005.
Description:xvii, 652 p. : ill. ; 25 cm.
Language:English
Series:Springer series in statistics
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/5750092
Hidden Bibliographic Details
Other authors / contributors:Moulines, Eric.
Rydén, Tobias, 1966-
ISBN:9780387402642
0387402640
Table of Contents:
  • Preface
  • Contributors
  • 1. Introduction
  • 1.1. What Is a Hidden Markov Model?
  • 1.2. Beyond Hidden Markov Models
  • 1.3. Examples
  • 1.3.1. Finite Hidden Markov Models
  • 1.3.2. Normal Hidden Markov Models
  • 1.3.3. Gaussian Linear State-Space Models
  • 1.3.4. Conditionally Gaussian Linear State-Space Models
  • 1.3.5. General (Continuous) State-Space HMMs
  • 1.3.6. Switching Processes with Markov Regime
  • 1.4. Left-to-Right and Ergodic Hidden Markov Models
  • 2. Main Definitions and Notations
  • 2.1. Markov Chains
  • 2.1.1. Transition Kernels
  • 2.1.2. Homogeneous Markov Chains
  • 2.1.3. Non-homogeneous Markov Chains
  • 2.2. Hidden Markov Models
  • 2.2.1. Definitions and Notations
  • 2.2.2. Conditional Independence in Hidden Markov Models
  • 2.2.3. Hierarchical Hidden Markov Models
  • Part I. State Inference
  • 3. Filtering and Smoothing Recursions
  • 3.1. Basic Notations and Definitions
  • 3.1.1. Likelihood
  • 3.1.2. Smoothing
  • 3.1.3. The Forward-Backward Decomposition
  • 3.1.4. Implicit Conditioning (Please Read This Section!)
  • 3.2. Forward-Backward
  • 3.2.1. The Forward-Backward Recursions
  • 3.2.2. Filtering and Normalized Recursion
  • 3.3. Markovian Decompositions
  • 3.3.1. Forward Decomposition
  • 3.3.2. Backward Decomposition
  • 3.4. Complements
  • 4. Advanced Topics in Smoothing
  • 4.1. Recursive Computation of Smoothed Functionals
  • 4.1.1. Fixed Point Smoothing
  • 4.1.2. Recursive Smoothers for General Functionals
  • 4.1.3. Comparison with Forward-Backward Smoothing
  • 4.2. Filtering and Smoothing in More General Models
  • 4.2.1. Smoothing in Markov-switching Models
  • 4.2.2. Smoothing in Partially Observed Markov Chains
  • 4.2.3. Marginal Smoothing in Hierarchical HMMs
  • 4.3. Forgetting of the Initial Condition
  • 4.3.1. Total Variation
  • 4.3.2. Lipshitz Contraction for Transition Kernels
  • 4.3.3. The Doeblin Condition and Uniform Ergodicity
  • 4.3.4. Forgetting Properties
  • 4.3.5. Uniform Forgetting Under Strong Mixing Conditions
  • 4.3.6. Forgetting Under Alternative Conditions
  • 5. Applications of Smoothing
  • 5.1. Models with Finite State Space
  • 5.1.1. Smoothing
  • 5.1.2. Maximum a Posteriori Sequence Estimation
  • 5.2. Gaussian Linear State-Space Models
  • 5.2.1. Filtering and Backward Markovian Smoothing
  • 5.2.2. Linear Prediction Interpretation
  • 5.2.3. The Prediction and Filtering Recursions Revisited
  • 5.2.4. Disturbance Smoothing
  • 5.2.5. The Backward Recursion and the Two-Filter Formula
  • 5.2.6. Application to Marginal Filtering and Smoothing in CGLSSMs
  • 6. Monte Carlo Methods
  • 6.1. Basic Monte Carlo Methods
  • 6.1.1. Monte Carlo Integration
  • 6.1.2. Monte Carlo Simulation for HMM State Inference
  • 6.2. A Markov Chain Monte Carlo Primer
  • 6.2.1. The Accept-Reject Algorithm
  • 6.2.2. Markov Chain Monte Carlo
  • 6.2.3. Metropolis-Hastings
  • 6.2.4. Hybrid Algorithms
  • 6.2.5. Gibbs Sampling
  • 6.2.6. Stopping an MCMC Algorithm
  • 6.3. Applications to Hidden Markov Models
  • 6.3.1. Generic Sampling Strategies
  • 6.3.2. Gibbs Sampling in CGLSSMs
  • 7. Sequential Monte Carlo Methods
  • 7.1. Importance Sampling and Resampling
  • 7.1.1. Importance Sampling
  • 7.1.2. Sampling Importance Resampling
  • 7.2. Sequential Importance Sampling
  • 7.2.1. Sequential Implementation for HMMs
  • 7.2.2. Choice of the Instrumental Kernel
  • 7.3. Sequential Improtance Sampling with Resampling
  • 7.3.1. Weight Degeneracy
  • 7.3.2. Resampling
  • 7.4. Complements
  • 7.4.1. Implementation of Multinomial Resampling
  • 7.4.2. Alternatives to Multinomial Resampling
  • 8. Advanced Topics in Sequential Monte Carlo
  • 8.1. Alternatives to SISR
  • 8.1.1. I.I.D. Sampling
  • 8.1.2. Two-Stage Sampling
  • 8.1.3. Interpretation with Auxiliary Variables
  • 8.1.4. Auxiliary Accept-Reject Sampling
  • 8.1.5. Markov Chain Monte Carlo Auxiliary Sampling
  • 8.2. Sequential Monte Carlo in Hierarchical HMMs
  • 8.2.1. Sequential Importance Sampling and Global Sampling
  • 8.2.2. Optimal Sampling
  • 8.2.3. Application to CGLSSMs
  • 8.3. Particle Approximation of Smoothing Functionals
  • 9. Analysis of Sequential Monte Carlo Methods
  • 9.1. Importance Sampling
  • 9.1.1. Unnormalized Importance Sampling
  • 9.1.2. Deviation Inequalities
  • 9.1.3. Self-normalized Importance Sampling Estimator
  • 9.2. Sampling Importance Resampling
  • 9.2.1. The Algorithm
  • 9.2.2. Definitions and Notations
  • 9.2.3. Weighting and Resampling
  • 9.2.4. Application to the Single-Stage SIR Algorithm
  • 9.3. Single-Step Analysis of SMC Methods
  • 9.3.1. Mutation Step
  • 9.3.2. Description of Algorithms
  • 9.3.3. Analysis of the Mutation/Selection Algorithm
  • 9.3.4. Analysis of the Selection/Mutation Algorithm
  • 9.4. Sequential Monte Carlo Methods
  • 9.4.1. SISR
  • 9.4.2. I.I.D. Sampling
  • 9.5. Complements
  • 9.5.1. Weak Limits Theorems for Triangular Array
  • 9.5.2. Bibliographic Notes
  • Part II. Parameter Inference
  • 10. Maximum Likelihood Inference, Part I: Optimization Through Exact Smoothing
  • 10.1. Likelihood Optimization in Incomplete Data Models
  • 10.1.1. Problem Statement and Notations
  • 10.1.2. The Expectation-Maximization Algorithm
  • 10.1.3. Gradient-based Methods
  • 10.1.4. Pros and Cons of Gradient-based Methods
  • 10.2. Application to HMMs
  • 10.2.1. Hidden Markov Models as Missing Data Models
  • 10.2.2. EM in HMMs
  • 10.2.3. Computing Derivatives
  • 10.2.4. Connection with the Sensitivity Equation Approach
  • 10.3. The Example of Normal Hidden Markov Models
  • 10.3.1. EM Parameter Update Formulas
  • 10.3.2. Estimation of the Initial Distribution
  • 10.3.3. Recursive Implementation of E-Step
  • 10.3.4. Computation of the Score and Observed Information
  • 10.4. The Example of Gaussian Linear State-Space Models
  • 10.4.1. The Intermediate Quantity of EM
  • 10.4.2. Recursive Implementation
  • 10.5. Complements
  • 10.5.1. Global Convergence of the EM Algorithm
  • 10.5.2. Rate of Convergence of EM
  • 10.5.3. Generalized EM Algorithms
  • 10.5.4. Bibliographic Notes
  • 11. Maximum Likelihood Inference, Part II: Monte Carlo Optimization
  • 11.1. Methods and Algorithms
  • 11.1.1. Monte Carlo EM
  • 11.1.2. Simulation Schedules
  • 11.1.3. Gradient-based Algorithms
  • 11.1.4. Interlude: Stochastic Approximation and the Robbins-Monro Approach
  • 11.1.5. Stochastic Gradient Algorithms
  • 11.1.6. Stochastic Approximation EM
  • 11.1.7. Stochastic EM
  • 11.2. Analysis of the MCEM Algorithm
  • 11.2.1. Convergence of Perturbed Dynamical Systems
  • 11.2.2. Convergence of the MCEM Algorithm
  • 11.2.3. Rate of Convergence of MCEM
  • 11.3. Analysis of Stochastic Approximation Algorithms
  • 11.3.1. Basic Results for Stochastic Approximation Algorithms
  • 11.3.2. Convergence of the Stochastic Gradient Algorithm
  • 11.3.3. Rate of Convergence of the Stochastic Gradient Algorithm
  • 11.3.4. Convergence of the SAEM Algorithm
  • 11.4. Complements
  • 12. Statistical Properties of the Maximum Likelihood Estimator
  • 12.1. A Primer on MLE Asymptotics
  • 12.2. Stationary Approximations
  • 12.3. Consistency
  • 12.3.1. Construction of the Stationary Conditional Log-likelihood
  • 12.3.2. The Contrast Function and Its Properties
  • 12.4. Identifiability
  • 12.4.1. Equivalence of Parameters
  • 12.4.2. Identifiability of Mixture Densities
  • 12.4.3. Application of Mixture Identifiability to Hidden Markov Models
  • 12.5. Asymptotic Normality of the Score and Convergence of the Observed Information
  • 12.5.1. The Score Function and Invoking the Fisher Identity
  • 12.5.2. Construction of the Stationary Conditional Score
  • 12.5.3. Weak Convergence of the Normalized Score
  • 12.5.4. Convergence of the Normalized Observed Information
  • 12.5.5. Asymptotics of the Maximum Likelihood Estimator
  • 12.6. Applications to Likelihood-based Tests
  • 12.7. Complements
  • 13. Fully Bayesian Approaches
  • 13.1. Parameter Estimation
  • 13.1.1. Bayesian Inference
  • 13.1.2. Prior Distributions for HMMs
  • 13.1.3. Non-identifiability and Label Switching
  • 13.1.4. MCMC Methods for Bayesian Inference
  • 13.2. Reversible Jump Methods
  • 13.2.1. Variable Dimension Models
  • 13.2.2. Green's Reversible Jump Algorithm
  • 13.2.3. Alternative Sampler Designs
  • 13.2.4. Alternatives to Reversible Jump MCMC
  • 13.3. Multiple Imputations Methods and Maximum a Posteriori
  • 13.3.1. Simulated Annealing
  • 13.3.2. The SAME Algorithm
  • Part III. Background and Complements
  • 14. Elements of Markov Chain Theory
  • 14.1. Chains on Countable State Spaces
  • 14.1.1. Irreducibility
  • 14.1.2. Recurrence and Transience
  • 14.1.3. Invariant Measures and Stationarity
  • 14.1.4. Ergodicity
  • 14.2. Chains on General State Spaces
  • 14.2.1. Irreducibility
  • 14.2.2. Recurrence and Transience
  • 14.2.3. Invariant Measures and Stationarity
  • 14.2.4. Ergodicity
  • 14.2.5. Geometric Ergodicity and Foster-Lyapunov Conditions
  • 14.2.6. Limit Theorems
  • 14.3. Applications to Hidden Markov Models
  • 14.3.1. Phi-irreducibility
  • 14.3.2. Atoms and Small Sets
  • 14.3.3. Recurrence and Positive Recurrence
  • 15. An Information-Theoretic Perspective on Order Estimation
  • 15.1. Model Order Identification: What Is It About?
  • 15.2. Order Estimation in Perspective
  • 15.3. Order Estimation and Composite Hypothesis Testing
  • 15.4. Code-based Identification
  • 15.4.1. Definitions
  • 15.4.2. Information Divergence Rates
  • 15.5. MDL Order Estimators in Bayesian Settings
  • 15.6. Strongly Consistent Penalized Maximum Likelihood Estimators for HMM Order Estimation
  • 15.7. Efficiency Issues
  • 15.7.1. Variations on Stein's Lemma
  • 15.7.2. Achieving Optimal Error Exponents
  • 15.8. Consistency of the BIC Estimator in the Markov Order Estimation Problem
  • 15.8.1. Some Martingale Tools
  • 15.8.2. The Martingale Approach
  • 15.8.3. The Union Bound Meets Martingale Inequalities
  • 15.9. Complements
  • Part IV. Appendices
  • A. Conditioning
  • A.1. Probability and Topology Terminology and Notation
  • A.2. Conditional Expectation
  • A.3. Conditional Distribution
  • A.4. Conditional Independence
  • B. Linear Prediction
  • B.1. Hilbert Spaces
  • B.2. The Projection Theorem
  • C. Notations
  • C.1. Mathematical
  • C.2. Probability
  • C.3. Hidden Markov Models
  • C.4. Sequential Monte Carlo
  • References
  • Index