Inference in hidden Markov models /
Saved in:
Author / Creator: | Cappé, Olivier. |
---|---|
Imprint: | New York : Springer, c2005. |
Description: | xvii, 652 p. : ill. ; 25 cm. |
Language: | English |
Series: | Springer series in statistics |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/5750092 |
Table of Contents:
- Preface
- Contributors
- 1. Introduction
- 1.1. What Is a Hidden Markov Model?
- 1.2. Beyond Hidden Markov Models
- 1.3. Examples
- 1.3.1. Finite Hidden Markov Models
- 1.3.2. Normal Hidden Markov Models
- 1.3.3. Gaussian Linear State-Space Models
- 1.3.4. Conditionally Gaussian Linear State-Space Models
- 1.3.5. General (Continuous) State-Space HMMs
- 1.3.6. Switching Processes with Markov Regime
- 1.4. Left-to-Right and Ergodic Hidden Markov Models
- 2. Main Definitions and Notations
- 2.1. Markov Chains
- 2.1.1. Transition Kernels
- 2.1.2. Homogeneous Markov Chains
- 2.1.3. Non-homogeneous Markov Chains
- 2.2. Hidden Markov Models
- 2.2.1. Definitions and Notations
- 2.2.2. Conditional Independence in Hidden Markov Models
- 2.2.3. Hierarchical Hidden Markov Models
- Part I. State Inference
- 3. Filtering and Smoothing Recursions
- 3.1. Basic Notations and Definitions
- 3.1.1. Likelihood
- 3.1.2. Smoothing
- 3.1.3. The Forward-Backward Decomposition
- 3.1.4. Implicit Conditioning (Please Read This Section!)
- 3.2. Forward-Backward
- 3.2.1. The Forward-Backward Recursions
- 3.2.2. Filtering and Normalized Recursion
- 3.3. Markovian Decompositions
- 3.3.1. Forward Decomposition
- 3.3.2. Backward Decomposition
- 3.4. Complements
- 4. Advanced Topics in Smoothing
- 4.1. Recursive Computation of Smoothed Functionals
- 4.1.1. Fixed Point Smoothing
- 4.1.2. Recursive Smoothers for General Functionals
- 4.1.3. Comparison with Forward-Backward Smoothing
- 4.2. Filtering and Smoothing in More General Models
- 4.2.1. Smoothing in Markov-switching Models
- 4.2.2. Smoothing in Partially Observed Markov Chains
- 4.2.3. Marginal Smoothing in Hierarchical HMMs
- 4.3. Forgetting of the Initial Condition
- 4.3.1. Total Variation
- 4.3.2. Lipshitz Contraction for Transition Kernels
- 4.3.3. The Doeblin Condition and Uniform Ergodicity
- 4.3.4. Forgetting Properties
- 4.3.5. Uniform Forgetting Under Strong Mixing Conditions
- 4.3.6. Forgetting Under Alternative Conditions
- 5. Applications of Smoothing
- 5.1. Models with Finite State Space
- 5.1.1. Smoothing
- 5.1.2. Maximum a Posteriori Sequence Estimation
- 5.2. Gaussian Linear State-Space Models
- 5.2.1. Filtering and Backward Markovian Smoothing
- 5.2.2. Linear Prediction Interpretation
- 5.2.3. The Prediction and Filtering Recursions Revisited
- 5.2.4. Disturbance Smoothing
- 5.2.5. The Backward Recursion and the Two-Filter Formula
- 5.2.6. Application to Marginal Filtering and Smoothing in CGLSSMs
- 6. Monte Carlo Methods
- 6.1. Basic Monte Carlo Methods
- 6.1.1. Monte Carlo Integration
- 6.1.2. Monte Carlo Simulation for HMM State Inference
- 6.2. A Markov Chain Monte Carlo Primer
- 6.2.1. The Accept-Reject Algorithm
- 6.2.2. Markov Chain Monte Carlo
- 6.2.3. Metropolis-Hastings
- 6.2.4. Hybrid Algorithms
- 6.2.5. Gibbs Sampling
- 6.2.6. Stopping an MCMC Algorithm
- 6.3. Applications to Hidden Markov Models
- 6.3.1. Generic Sampling Strategies
- 6.3.2. Gibbs Sampling in CGLSSMs
- 7. Sequential Monte Carlo Methods
- 7.1. Importance Sampling and Resampling
- 7.1.1. Importance Sampling
- 7.1.2. Sampling Importance Resampling
- 7.2. Sequential Importance Sampling
- 7.2.1. Sequential Implementation for HMMs
- 7.2.2. Choice of the Instrumental Kernel
- 7.3. Sequential Improtance Sampling with Resampling
- 7.3.1. Weight Degeneracy
- 7.3.2. Resampling
- 7.4. Complements
- 7.4.1. Implementation of Multinomial Resampling
- 7.4.2. Alternatives to Multinomial Resampling
- 8. Advanced Topics in Sequential Monte Carlo
- 8.1. Alternatives to SISR
- 8.1.1. I.I.D. Sampling
- 8.1.2. Two-Stage Sampling
- 8.1.3. Interpretation with Auxiliary Variables
- 8.1.4. Auxiliary Accept-Reject Sampling
- 8.1.5. Markov Chain Monte Carlo Auxiliary Sampling
- 8.2. Sequential Monte Carlo in Hierarchical HMMs
- 8.2.1. Sequential Importance Sampling and Global Sampling
- 8.2.2. Optimal Sampling
- 8.2.3. Application to CGLSSMs
- 8.3. Particle Approximation of Smoothing Functionals
- 9. Analysis of Sequential Monte Carlo Methods
- 9.1. Importance Sampling
- 9.1.1. Unnormalized Importance Sampling
- 9.1.2. Deviation Inequalities
- 9.1.3. Self-normalized Importance Sampling Estimator
- 9.2. Sampling Importance Resampling
- 9.2.1. The Algorithm
- 9.2.2. Definitions and Notations
- 9.2.3. Weighting and Resampling
- 9.2.4. Application to the Single-Stage SIR Algorithm
- 9.3. Single-Step Analysis of SMC Methods
- 9.3.1. Mutation Step
- 9.3.2. Description of Algorithms
- 9.3.3. Analysis of the Mutation/Selection Algorithm
- 9.3.4. Analysis of the Selection/Mutation Algorithm
- 9.4. Sequential Monte Carlo Methods
- 9.4.1. SISR
- 9.4.2. I.I.D. Sampling
- 9.5. Complements
- 9.5.1. Weak Limits Theorems for Triangular Array
- 9.5.2. Bibliographic Notes
- Part II. Parameter Inference
- 10. Maximum Likelihood Inference, Part I: Optimization Through Exact Smoothing
- 10.1. Likelihood Optimization in Incomplete Data Models
- 10.1.1. Problem Statement and Notations
- 10.1.2. The Expectation-Maximization Algorithm
- 10.1.3. Gradient-based Methods
- 10.1.4. Pros and Cons of Gradient-based Methods
- 10.2. Application to HMMs
- 10.2.1. Hidden Markov Models as Missing Data Models
- 10.2.2. EM in HMMs
- 10.2.3. Computing Derivatives
- 10.2.4. Connection with the Sensitivity Equation Approach
- 10.3. The Example of Normal Hidden Markov Models
- 10.3.1. EM Parameter Update Formulas
- 10.3.2. Estimation of the Initial Distribution
- 10.3.3. Recursive Implementation of E-Step
- 10.3.4. Computation of the Score and Observed Information
- 10.4. The Example of Gaussian Linear State-Space Models
- 10.4.1. The Intermediate Quantity of EM
- 10.4.2. Recursive Implementation
- 10.5. Complements
- 10.5.1. Global Convergence of the EM Algorithm
- 10.5.2. Rate of Convergence of EM
- 10.5.3. Generalized EM Algorithms
- 10.5.4. Bibliographic Notes
- 11. Maximum Likelihood Inference, Part II: Monte Carlo Optimization
- 11.1. Methods and Algorithms
- 11.1.1. Monte Carlo EM
- 11.1.2. Simulation Schedules
- 11.1.3. Gradient-based Algorithms
- 11.1.4. Interlude: Stochastic Approximation and the Robbins-Monro Approach
- 11.1.5. Stochastic Gradient Algorithms
- 11.1.6. Stochastic Approximation EM
- 11.1.7. Stochastic EM
- 11.2. Analysis of the MCEM Algorithm
- 11.2.1. Convergence of Perturbed Dynamical Systems
- 11.2.2. Convergence of the MCEM Algorithm
- 11.2.3. Rate of Convergence of MCEM
- 11.3. Analysis of Stochastic Approximation Algorithms
- 11.3.1. Basic Results for Stochastic Approximation Algorithms
- 11.3.2. Convergence of the Stochastic Gradient Algorithm
- 11.3.3. Rate of Convergence of the Stochastic Gradient Algorithm
- 11.3.4. Convergence of the SAEM Algorithm
- 11.4. Complements
- 12. Statistical Properties of the Maximum Likelihood Estimator
- 12.1. A Primer on MLE Asymptotics
- 12.2. Stationary Approximations
- 12.3. Consistency
- 12.3.1. Construction of the Stationary Conditional Log-likelihood
- 12.3.2. The Contrast Function and Its Properties
- 12.4. Identifiability
- 12.4.1. Equivalence of Parameters
- 12.4.2. Identifiability of Mixture Densities
- 12.4.3. Application of Mixture Identifiability to Hidden Markov Models
- 12.5. Asymptotic Normality of the Score and Convergence of the Observed Information
- 12.5.1. The Score Function and Invoking the Fisher Identity
- 12.5.2. Construction of the Stationary Conditional Score
- 12.5.3. Weak Convergence of the Normalized Score
- 12.5.4. Convergence of the Normalized Observed Information
- 12.5.5. Asymptotics of the Maximum Likelihood Estimator
- 12.6. Applications to Likelihood-based Tests
- 12.7. Complements
- 13. Fully Bayesian Approaches
- 13.1. Parameter Estimation
- 13.1.1. Bayesian Inference
- 13.1.2. Prior Distributions for HMMs
- 13.1.3. Non-identifiability and Label Switching
- 13.1.4. MCMC Methods for Bayesian Inference
- 13.2. Reversible Jump Methods
- 13.2.1. Variable Dimension Models
- 13.2.2. Green's Reversible Jump Algorithm
- 13.2.3. Alternative Sampler Designs
- 13.2.4. Alternatives to Reversible Jump MCMC
- 13.3. Multiple Imputations Methods and Maximum a Posteriori
- 13.3.1. Simulated Annealing
- 13.3.2. The SAME Algorithm
- Part III. Background and Complements
- 14. Elements of Markov Chain Theory
- 14.1. Chains on Countable State Spaces
- 14.1.1. Irreducibility
- 14.1.2. Recurrence and Transience
- 14.1.3. Invariant Measures and Stationarity
- 14.1.4. Ergodicity
- 14.2. Chains on General State Spaces
- 14.2.1. Irreducibility
- 14.2.2. Recurrence and Transience
- 14.2.3. Invariant Measures and Stationarity
- 14.2.4. Ergodicity
- 14.2.5. Geometric Ergodicity and Foster-Lyapunov Conditions
- 14.2.6. Limit Theorems
- 14.3. Applications to Hidden Markov Models
- 14.3.1. Phi-irreducibility
- 14.3.2. Atoms and Small Sets
- 14.3.3. Recurrence and Positive Recurrence
- 15. An Information-Theoretic Perspective on Order Estimation
- 15.1. Model Order Identification: What Is It About?
- 15.2. Order Estimation in Perspective
- 15.3. Order Estimation and Composite Hypothesis Testing
- 15.4. Code-based Identification
- 15.4.1. Definitions
- 15.4.2. Information Divergence Rates
- 15.5. MDL Order Estimators in Bayesian Settings
- 15.6. Strongly Consistent Penalized Maximum Likelihood Estimators for HMM Order Estimation
- 15.7. Efficiency Issues
- 15.7.1. Variations on Stein's Lemma
- 15.7.2. Achieving Optimal Error Exponents
- 15.8. Consistency of the BIC Estimator in the Markov Order Estimation Problem
- 15.8.1. Some Martingale Tools
- 15.8.2. The Martingale Approach
- 15.8.3. The Union Bound Meets Martingale Inequalities
- 15.9. Complements
- Part IV. Appendices
- A. Conditioning
- A.1. Probability and Topology Terminology and Notation
- A.2. Conditional Expectation
- A.3. Conditional Distribution
- A.4. Conditional Independence
- B. Linear Prediction
- B.1. Hilbert Spaces
- B.2. The Projection Theorem
- C. Notations
- C.1. Mathematical
- C.2. Probability
- C.3. Hidden Markov Models
- C.4. Sequential Monte Carlo
- References
- Index