Quantitative risk management : concepts, techniques and tools /
Saved in:
Author / Creator: | McNeil, Alexander J., 1967- |
---|---|
Imprint: | Princeton, N.J. : Princeton University Press,cc2005. |
Description: | xv, 538 p. : ill. ; 24 cm. |
Language: | English |
Series: | Princeton series in finance |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/5753213 |
Table of Contents:
- Preface
- 1. Risk in Perspective
- 1.1. Risk
- 1.1.1. Risk and Randomness
- 1.1.2. Financial Risk
- 1.1.3. Measurement and Management
- 1.2. A Brief History of Risk Management
- 1.2.1. From Babylon to Wall Street
- 1.2.2. The Road to Regulation
- 1.3. The New Regulatory Framework
- 1.3.1. Basel II
- 1.3.2. Solvency 2
- 1.4. Why Manage Financial Risk?
- 1.4.1. A Societal View
- 1.4.2. The Shareholder's View
- 1.4.3. Economic Capital
- 1.5. Quantitative Risk Management
- 1.5.1. The Nature of the Challenge
- 1.5.2. QRM for the Future
- 2. Basic Concepts in Risk Management
- 2.1. Risk Factors and Loss Distributions
- 2.1.1. General Definitions
- 2.1.2. Conditional and Unconditional Loss Distribution
- 2.1.3. Mapping of Risks: Some Examples
- 2.2. Risk Measurement
- 2.2.1. Approaches to Risk Measurement
- 2.2.2. Value-at-Risk
- 2.2.3. Further Comments on VaR
- 2.2.4. Other Risk Measures Based on Loss Distributions
- 2.3. Standard Methods for Market Risks
- 2.3.1. Variance-Covariance Method
- 2.3.2. Historical Simulation
- 2.3.3. Monte Carlo
- 2.3.4. Losses over Several Periods and Scaling
- 2.3.5. Backtesting
- 2.3.6. An Illustrative Example
- 3. Multivariate Models
- 3.1. Basics of Multivariate Modelling
- 3.1.1. Random Vectors and Their Distributions
- 3.1.2. Standard Estimators of Covariance and Correlation
- 3.1.3. The Multivariate Normal Distribution
- 3.1.4. Testing Normality and Multivariate Normality
- 3.2. Normal Mixture Distributions
- 3.2.1. Normal Variance Mixtures
- 3.2.2. Normal Mean-Variance Mixtures
- 3.2.3. Generalized Hyperbolic Distributions
- 3.2.4. Fitting Generalized Hyperbolic Distributions to Data
- 3.2.5. Empirical Examples
- 3.3. Spherical and Elliptical Distributions
- 3.3.1. Spherical Distributions
- 3.3.2. Elliptical Distributions
- 3.3.3. Properties of Elliptical Distributions
- 3.3.4. Estimating Dispersion and Correlation
- 3.3.5. Testing for Elliptical Symmetry
- 3.4. Dimension Reduction Techniques
- 3.4.1. Factor Models
- 3.4.2. Statistical Calibration Strategies
- 3.4.3. Regression Analysis of Factor Models
- 3.4.4. Principal Component Analysis
- 4. Financial Time Series
- 4.1. Empirical Analyses of Financial Time Series
- 4.1.1. Stylized Facts
- 4.1.2. Multivariate Stylized Facts
- 4.2. Fundamentals of Time Series Analysis
- 4.2.1. Basic Definitions
- 4.2.2. ARMA Processes
- 4.2.3. Analysis in the Time Domain
- 4.2.4. Statistical Analysis of Time Series
- 4.2.5. Prediction
- 4.3. GARCH Models for Changing Volatility
- 4.3.1. ARCH Processes
- 4.3.2. GARCH Processes
- 4.3.3. Simple Extensions of the GARCH Model
- 4.3.4. Fitting GARCH Models to Data
- 4.4. Volatility Models and Risk Estimation
- 4.4.1. Volatility Forecasting
- 4.4.2. Conditional Risk Measurement
- 4.4.3. Backtesting
- 4.5. Fundamentals of Multivariate Time Series
- 4.5.1. Basic Definitions
- 4.5.2. Analysis in the Time Domain
- 4.5.3. Multivariate ARMA Processes
- 4.6. Multivariate GARCH Processes
- 4.6.1. General Structure of Models
- 4.6.2. Models for Conditional Correlation
- 4.6.3. Models for Conditional Covariance
- 4.6.4. Fitting Multivariate GARCH Models
- 4.6.5. Dimension Reduction in MGARCH
- 4.6.6. MGARCH and Conditional Risk Measurement
- 5. Copulas and Dependence
- 5.1. Copulas
- 5.1.1. Basic Properties
- 5.1.2. Examples of Copulas
- 5.1.3. Meta Distributions
- 5.1.4. Simulation of Copulas and Meta Distributions
- 5.1.5. Further Properties of Copulas
- 5.1.6. Perfect Dependence
- 5.2. Dependence Measures
- 5.2.1. Linear Correlation
- 5.2.2. Rank Correlation
- 5.2.3. Coefficients of Tail Dependence
- 5.3. Normal Mixture Copulas
- 5.3.1. Tail Dependence
- 5.3.2. Rank Correlations
- 5.3.3. Skewed Normal Mixture Copulas
- 5.3.4. Grouped Normal Mixture Copulas
- 5.4. Archimedean Copulas
- 5.4.1. Bivariate Archimedean Copulas
- 5.4.2. Multivariate Archimedean Copulas
- 5.4.3. Non-exchangeable Archimedean Copulas
- 5.5. Fitting Copulas to Data
- 5.5.1. Method-of-Moments using Rank Correlation
- 5.5.2. Forming a Pseudo-Sample from the Copula
- 5.5.3. Maximum Likelihood Estimation
- 6. Aggregate Risk
- 6.1. Coherent Measures of Risk
- 6.1.1. The Axioms of Coherence
- 6.1.2. Value-at-Risk
- 6.1.3. Coherent Risk Measures Based on Loss Distributions
- 6.1.4. Coherent Risk Measures as Generalized Scenarios
- 6.1.5. Mean-VaR Portfolio Optimization
- 6.2. Bounds for Aggregate Risks
- 6.2.1. The General Frechet Problem
- 6.2.2. The Case of VaR
- 6.3. Capital Allocation
- 6.3.1. The Allocation Problem
- 6.3.2. The Euler Principle and Examples
- 6.3.3. Economic Justification of the Euler Principle
- 7. Extreme Value Theory
- 7.1. Maxima
- 7.1.1. Generalized Extreme Value Distribution
- 7.1.2. Maximum Domains of Attraction
- 7.1.3. Maxima of Strictly Stationary Time Series
- 7.1.4. The Block Maxima Method
- 7.2. Threshold Exceedances
- 7.2.1. Generalized Pareto Distribution
- 7.2.2. Modelling Excess Losses
- 7.2.3. Modelling Tails and Measures of Tail Risk
- 7.2.4. The Hill Method
- 7.2.5. Simulation Study of EVT Quantile Estimators
- 7.2.6. Conditional EVT for Financial Time Series
- 7.3. Tails of Specific Models
- 7.3.1. Domain of Attraction of Frechet Distribution
- 7.3.2. Domain of Attraction of Gumbel Distribution
- 7.3.3. Mixture Models
- 7.4. Point Process Models
- 7.4.1. Threshold Exceedances for Strict White Noise
- 7.4.2. The POT Model
- 7.4.3. Self-Exciting Processes
- 7.4.4. A Self-Exciting POT Model
- 7.5. Multivariate Maxima
- 7.5.1. Multivariate Extreme Value Copulas
- 7.5.2. Copulas for Multivariate Minima
- 7.5.3. Copula Domains of Attraction
- 7.5.4. Modelling Multivariate Block Maxima
- 7.6. Multivariate Threshold Exceedances
- 7.6.1. Threshold Models Using EV Copulas
- 7.6.2. Fitting a Multivariate Tail Model
- 7.6.3. Threshold Copulas and Their Limits
- 8. Credit Risk Management
- 8.1. Introduction to Credit Risk Modelling
- 8.1.1. Credit Risk Models
- 8.1.2. The Nature of the Challenge
- 8.2. Structural Models of Default
- 8.2.1. The Merton Model
- 8.2.2. Pricing in Merton's Model
- 8.2.3. The KMV Model
- 8.2.4. Models Based on Credit Migration
- 8.2.5. Multivariate Firm-Value Models
- 8.3. Threshold Models
- 8.3.1. Notation for One-Period Portfolio Models
- 8.3.2. Threshold Models and Copulas
- 8.3.3. Industry Examples
- 8.3.4. Models Based on Alternative Copulas
- 8.3.5. Model Risk Issues
- 8.4. The Mixture Model Approach
- 8.4.1. One-Factor Bernoulli Mixture Models
- 8.4.2. CreditRisk+
- 8.4.3. Asymptotics for Large Portfolios
- 8.4.4. Threshold Models as Mixture Models
- 8.4.5. Model-Theoretic Aspects of Basel II
- 8.4.6. Model Risk Issues
- 8.5. Monte Carlo Methods
- 8.5.1. Basics of Importance Sampling
- 8.5.2. Application to Bernoulli-Mixture Models
- 8.6. Statistical Inference for Mixture Models
- 8.6.1. Motivation
- 8.6.2. Exchangeable Bernoulli-Mixture Models
- 8.6.3. Mixture Models as GLMMs
- 8.6.4. One-Factor Model with Rating Effect
- 9. Dynamic Credit Risk Models
- 9.1. Credit Derivatives
- 9.1.1. Overview
- 9.1.2. Single-Name Credit Derivatives
- 9.1.3. Portfolio Credit Derivatives
- 9.2. Mathematical Tools
- 9.2.1. Random Times and Hazard Rates
- 9.2.2. Modelling Additional Information
- 9.2.3. Doubly Stochastic Random Times
- 9.3. Financial and Actuarial Pricing of Credit Risk
- 9.3.1. Physical and Risk-Neutral Probability Measure
- 9.3.2. Risk-Neutral Pricing and Market Completeness
- 9.3.3. Martingale Modelling
- 9.3.4. The Actuarial Approach to Credit Risk Pricing
- 9.4. Pricing with Doubly Stochastic Default Times
- 9.4.1. Recovery Payments of Corporate Bonds
- 9.4.2. The Model
- 9.4.3. Pricing Formulas
- 9.4.4. Applications
- 9.5. Affine Models
- 9.5.1. Basic Results
- 9.5.2. The CIR Square-Root Diffusion
- 9.5.3. Extensions
- 9.6. Conditionally Independent Defaults
- 9.6.1. Reduced-Form Models for Portfolio Credit Risk
- 9.6.2. Conditionally Independent Default Times
- 9.6.3. Examples and Applications
- 9.7. Copula Models
- 9.7.1. Definition and General Properties
- 9.7.2. Factor Copula Models
- 9.8. Default Contagion in Reduced-Form Models
- 9.8.1. Default Contagion and Default Dependence
- 9.8.2. Information-Based Default Contagion
- 9.8.3. Interacting Intensities
- 10. Operational Risk and Insurance Analytics
- 10.1. Operational Risk in Perspective
- 10.1.1. A New Risk Class
- 10.1.2. The Elementary Approaches
- 10.1.3. Advanced Measurement Approaches
- 10.1.4. Operational Loss Data
- 10.2. Elements of Insurance Analytics
- 10.2.1. The Case for Acturaial Methodology
- 10.2.2. The Total Loss Amount
- 10.2.3. Approximations and Panjer Recursion
- 10.2.4. Poisson Mixtures
- 10.2.5. Tails of Aggregate Loss Distributions
- 10.2.6. The Homogeneous Poisson Process
- 10.2.7. Processes Related to the Poisson Process
- Appendix
- A.1. Miscellaneous Definitions and Results
- A.1.1. Type of Distribution
- A.1.2. Generalized Inverses and Quantiles
- A.1.3. Karamata's Theorem
- A.2. Probability Distributions
- A.2.1. Beta
- A.2.2. Exponential
- A.2.3. F
- A.2.4. Gamma
- A.2.5. Generalized Inverse Gaussian
- A.2.6. Inverse Gamma
- A.2.7. Negative Binomial
- A.2.8. Pareto
- A.2.9. Stable
- A.3. Likelihood Inference
- A.3.1. Maximum Likelihood Estimators
- A.3.2. Asymptotic Results: Scalar Parameter
- A.3.3. Asymptotic Results: Vector of Parameters
- A.3.4. Wald Test and Confidence Intervals
- A.3.5. Likelihood Ratio Test and Confidence Intervals
- A.3.6. Akaike Information Criterion
- References
- Index