Preparative enantioselective chromatography /
Saved in:
Imprint: | Ames, Iowa : Blackwell Pub., 2005. |
---|---|
Description: | xiv, 330 p. : ill. ; 26 cm. |
Language: | English |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/5778711 |
Table of Contents:
- Contributors
- Preface
- 1. Chiral chromatography in support of pharmaceutical process research
- 1.1. Introduction
- 1.2. A brief introduction to chirality
- 1.3. Why chirality is important
- 1.4. Accessing enantiopurity: a brief overview of approaches
- 1.4.1. Enantiopure starting materials: the chiral pool
- 1.4.2. Removable enantioenriched auxiliaries
- 1.4.3. Enantioselective catalysis
- 1.4.4. Resolution technologies: introduction
- 1.4.5. Chromatographic productivity is the key metric for preparative chromatography
- 1.4.6. Stationary phases for preparative chiral chromatography
- 1.4.7. Advantages of preparative chiral chromatography over other approaches for accessing enantiopure materials
- 1.4.8. Simulated moving bed enantioseparation
- 1.5. Green enantioseparation
- 1.6. What is the appropriate role of preparative chromatography in organic synthesis?
- 1.7. Fording the river at the easiest point: some observations on the appropriate placement of a chromatographic resolution within a chiral synthesis
- 1.8. Origins of preparative chiral chromatography
- 1.9. Practical tips for preparative chromatographic enantioseparation
- 1.10. Conclusion
- 2. Introduction to preparative chromatography
- 2.1. Introduction
- 2.2. Adsorption isotherms
- 2.2.1. The simple case - the Langmuir isotherm
- 2.2.2. Other isotherms
- 2.2.3. Competitive isotherms
- 2.3. Kinetics
- 2.4. Metrics for preparative operations
- 2.4.1. Throughput
- 2.4.2. Production rate
- 2.4.3. Productivity
- 2.4.4. Specific productivity
- 2.4.5. Cost
- 2.5. The influence of chromatographic parameters on preparative chromatography
- 2.5.1. Effect of particle size on preparative performance
- 2.5.2. Effects of pressure
- 2.5.3. Effects of column efficiency
- 2.5.4. Effect of column length
- 2.5.5. The effects of selectivity
- 2.6. Economics of preparative separations
- 2.6.1. Point of insertion of the chromatographic resolution in the synthetic route
- 3. Chiral stationary phases for preparative enantioselective chromatography
- 3.1. Summary
- 3.2. Introduction
- 3.3. Historical development of CSPs for preparative chromatography
- 3.4. Preparative CSPs
- 3.4.1. Classification of CSPs
- 3.4.2. Polymeric phases
- 3.4.3. Brush-type CSPs
- 3.4.4. Chiral phases for ligand-exchange chromatography
- 3.4.5. Imprinted phases
- 3.5. Chemical and physical properties of CSPs
- 3.5.1. Loading capacity
- 3.5.2. Chemical and physical stability
- 3.5.3. Solubility of the chiral solute
- 3.6. New and future developments in the field of preparative CSPs
- 3.6.1. CSPs with improved loading capacity
- 3.6.2. CSPs with improved selectivity
- 3.6.3. Immobilised polysaccharide-based CSPs
- 3.7. Conclusion
- 4. Method development for preparative enantioselective chromatography
- 4.1. Introduction
- 4.2. Chiral stationary phases for enantioselective chromatography
- 4.3. Screening and optimisation strategy for preparative chiral chromatography
- 4.3.1. Choice of the stationary phase
- 4.3.2. Choice of the mobile phase
- 4.3.3. Screening and optimisation of specific phases
- 4.3.4. Additives in the mobile phase
- 4.4. Preparative separations, criteria and objectives
- 4.4.1. Loadability and productivity
- 4.4.2. Selectivity and productivity
- 4.4.3. Solubility and productivity
- 4.4.4. Viscosity and productivity
- 4.4.5. Chemical and enantiomeric stability
- 4.5. Scale-up issues
- 4.5.1. Laboratory-scale separations
- 4.5.2. Large-scale separations
- 4.6. Conclusion
- 5. Scaling-up of preparative chromatographic enantiomer separations
- 5.1. Introduction
- 5.2. Analytical screening models
- 5.2.1. Standard procedure
- 5.2.2. Fast analytical screening process
- 5.3. Scaling-up from milligram to kilogram quantities
- 5.3.1. Introduction
- 5.3.2. Separation of a xanthone derivative
- 5.3.3. Separation of 'dibenzocycloheptanol' derivative
- 5.3.4. Separation of a 'pyrido-pyrimidin-4-one' derivative
- 5.3.5. Separation of a piperazinyl-piperidine derivative
- 5.3.6. Summary - scale-up
- 5.4. Larger scale separations
- 5.4.1. Introduction
- 5.4.2. Separation of a 'pyrolidino-quinolinone' derivative
- 5.5. Scale-up problems in early development
- 5.5.1. Introduction
- 5.5.2. Separation of a 'tetracyclic' compound
- 5.5.3. Non-natural amino acids
- 5.5.4. Separation of an 'indole' derivative
- 5.5.5. Summary
- 5.6. General conclusions
- 6. Steady-state recycling and its use in chiral separations
- 6.1. Overview
- 6.2. Introduction
- 6.3. SSR - concept and operation
- 6.3.1. Concept
- 6.3.2. Operation
- 6.3.3. Role of the injection loop
- 6.4. Case studies
- 6.4.1. Case study 1
- 6.4.2. Case study 2
- 6.4.3. Case study 3: collection of three SSR fractions
- 6.5. Conclusions
- 7. Simulated moving bed and related techniques
- 7.1. Overview
- 7.2. The SMB concept
- 7.3. Modeling of SMB processes
- 7.4. Design of SMB processes
- 7.5. Simulation of SMB processes
- 7.5.1. Influence of the equilibrium adsorption isotherms
- 7.5.2. Influence of mass transfer resistance
- 7.6. SMB related techniques
- 7.6.1. Varicol processes
- 7.6.2. Pseudo-SMB processes
- 8. Preparative-scale supercritical fluid chromatography
- 8.1. Introduction
- 8.2. History of SFC at GlaxoSmithKline
- 8.3. Principles of SFC
- 8.4. Advantages of SFC
- 8.5. Drawbacks of preparative SFC
- 8.6. Use of SFC
- 8.7. Chiral separation using SFC
- 8.8. Achiral separation using SFC
- 8.9. Consideration of preparative SFC
- 8.10. Future direction and development
- 8.11. Conclusion
- 9. Equipment for preparative and large size enantioselective chromatography
- 9.1. Introduction
- 9.2. The heart of the chromatographic process: the column
- 9.2.1. Packing technique, bed formation and bed consolidation
- 9.2.2. The wall region
- 9.2.3. Heat dissipation
- 9.2.4. Column technology
- 9.2.5. Column design
- 9.3. Equipment considerations for batch chromatography
- 9.3.1. Recycling
- 9.3.2. Detection
- 9.4. Supercritical fluid chromatography
- 9.4.1. Principle
- 9.4.2. Technical aspects
- 9.4.3. Eluent
- 9.4.4. Pumping
- 9.4.5. Injection
- 9.4.6. Detection
- 9.4.7. Product recovery
- 9.4.8. Eluent recycling
- 9.4.9. High-pressure technology, safety aspects
- 9.5. Multicolumn continuous chromatographic processes
- 9.5.1. Simulated moving bed
- 9.5.2. VARICOL
- 10. Case study in production-scale multicolumn continuous chromatography
- 10.1. Introduction
- 10.2. Chromatographic process research
- 10.2.1. Introduction
- 10.2.2. Selection of racemate to separate
- 10.2.3. Choice of the chromatographic conditions
- 10.2.4. Choice of the separation technique
- 10.3. Process development
- 10.3.1. Optimisation of the chemical steps
- 10.4. Production facts
- 10.4.1. Introduction
- 10.4.2. Implementation in a cGMP production environment
- 10.4.3. Qualification
- 10.4.4. Validation
- 10.4.5. Production and maintenance data
- 10.5. Further areas of development
- 11. Contract manufacturing and outsourcing considerations
- 11.1. Introduction
- 11.2. The regulatory agencies and the chiral market
- 11.3. Contract manufacturing
- 11.3.1. Time constraints
- 11.3.2. Risk of capital investment
- 11.3.3. Expertise
- 11.3.4. Intellectual property
- 11.3.5. Location
- 11.3.6. Primary or secondary supplier
- 11.4. Selecting the outsourcing partner
- 11.4.1. Expectations
- 11.4.2. Audit
- 11.4.3. Decision grid
- 11.5. Communication
- 11.5.1. Contact matrix
- 11.5.2. Frequent updates
- 11.6. Project requirements
- 11.6.1. R&D - method development
- 11.6.2. Clinical trial quantities
- 11.6.3. Trial runs vs production runs
- 11.6.4. Commercial-scale quantities
- 11.6.5. Schedule
- 11.6.6. Quantity
- 11.6.7. Product quality
- 11.7. Transfer of information
- 11.7.1. Feed characterization
- 11.7.2. Separation conditions
- 11.7.3. The chiral stationary phase
- 11.7.4. Analytical methods
- 11.7.5. Impurity specifications
- 11.7.6. Final product
- 11.7.7. Other considerations
- 11.7.8. End of the project
- 11.8. Economics
- 11.8.1. Productivity
- 11.8.2. Production rate
- 11.8.3. Cost breakdown
- 11.8.4. Clinical trial quantities
- 11.8.5. Commercial-scale quantities
- 11.9. Conclusion
- Appendix. Advanced concepts
- Index