Preparative enantioselective chromatography /

Saved in:
Bibliographic Details
Imprint:Ames, Iowa : Blackwell Pub., 2005.
Description:xiv, 330 p. : ill. ; 26 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/5778711
Hidden Bibliographic Details
Other authors / contributors:Cox, Geoffrey J., 1952-
ISBN:1405118709 (hardback : alk. paper)
Notes:Includes bibliographical references and index.
Table of Contents:
  • Contributors
  • Preface
  • 1. Chiral chromatography in support of pharmaceutical process research
  • 1.1. Introduction
  • 1.2. A brief introduction to chirality
  • 1.3. Why chirality is important
  • 1.4. Accessing enantiopurity: a brief overview of approaches
  • 1.4.1. Enantiopure starting materials: the chiral pool
  • 1.4.2. Removable enantioenriched auxiliaries
  • 1.4.3. Enantioselective catalysis
  • 1.4.4. Resolution technologies: introduction
  • 1.4.5. Chromatographic productivity is the key metric for preparative chromatography
  • 1.4.6. Stationary phases for preparative chiral chromatography
  • 1.4.7. Advantages of preparative chiral chromatography over other approaches for accessing enantiopure materials
  • 1.4.8. Simulated moving bed enantioseparation
  • 1.5. Green enantioseparation
  • 1.6. What is the appropriate role of preparative chromatography in organic synthesis?
  • 1.7. Fording the river at the easiest point: some observations on the appropriate placement of a chromatographic resolution within a chiral synthesis
  • 1.8. Origins of preparative chiral chromatography
  • 1.9. Practical tips for preparative chromatographic enantioseparation
  • 1.10. Conclusion
  • 2. Introduction to preparative chromatography
  • 2.1. Introduction
  • 2.2. Adsorption isotherms
  • 2.2.1. The simple case - the Langmuir isotherm
  • 2.2.2. Other isotherms
  • 2.2.3. Competitive isotherms
  • 2.3. Kinetics
  • 2.4. Metrics for preparative operations
  • 2.4.1. Throughput
  • 2.4.2. Production rate
  • 2.4.3. Productivity
  • 2.4.4. Specific productivity
  • 2.4.5. Cost
  • 2.5. The influence of chromatographic parameters on preparative chromatography
  • 2.5.1. Effect of particle size on preparative performance
  • 2.5.2. Effects of pressure
  • 2.5.3. Effects of column efficiency
  • 2.5.4. Effect of column length
  • 2.5.5. The effects of selectivity
  • 2.6. Economics of preparative separations
  • 2.6.1. Point of insertion of the chromatographic resolution in the synthetic route
  • 3. Chiral stationary phases for preparative enantioselective chromatography
  • 3.1. Summary
  • 3.2. Introduction
  • 3.3. Historical development of CSPs for preparative chromatography
  • 3.4. Preparative CSPs
  • 3.4.1. Classification of CSPs
  • 3.4.2. Polymeric phases
  • 3.4.3. Brush-type CSPs
  • 3.4.4. Chiral phases for ligand-exchange chromatography
  • 3.4.5. Imprinted phases
  • 3.5. Chemical and physical properties of CSPs
  • 3.5.1. Loading capacity
  • 3.5.2. Chemical and physical stability
  • 3.5.3. Solubility of the chiral solute
  • 3.6. New and future developments in the field of preparative CSPs
  • 3.6.1. CSPs with improved loading capacity
  • 3.6.2. CSPs with improved selectivity
  • 3.6.3. Immobilised polysaccharide-based CSPs
  • 3.7. Conclusion
  • 4. Method development for preparative enantioselective chromatography
  • 4.1. Introduction
  • 4.2. Chiral stationary phases for enantioselective chromatography
  • 4.3. Screening and optimisation strategy for preparative chiral chromatography
  • 4.3.1. Choice of the stationary phase
  • 4.3.2. Choice of the mobile phase
  • 4.3.3. Screening and optimisation of specific phases
  • 4.3.4. Additives in the mobile phase
  • 4.4. Preparative separations, criteria and objectives
  • 4.4.1. Loadability and productivity
  • 4.4.2. Selectivity and productivity
  • 4.4.3. Solubility and productivity
  • 4.4.4. Viscosity and productivity
  • 4.4.5. Chemical and enantiomeric stability
  • 4.5. Scale-up issues
  • 4.5.1. Laboratory-scale separations
  • 4.5.2. Large-scale separations
  • 4.6. Conclusion
  • 5. Scaling-up of preparative chromatographic enantiomer separations
  • 5.1. Introduction
  • 5.2. Analytical screening models
  • 5.2.1. Standard procedure
  • 5.2.2. Fast analytical screening process
  • 5.3. Scaling-up from milligram to kilogram quantities
  • 5.3.1. Introduction
  • 5.3.2. Separation of a xanthone derivative
  • 5.3.3. Separation of 'dibenzocycloheptanol' derivative
  • 5.3.4. Separation of a 'pyrido-pyrimidin-4-one' derivative
  • 5.3.5. Separation of a piperazinyl-piperidine derivative
  • 5.3.6. Summary - scale-up
  • 5.4. Larger scale separations
  • 5.4.1. Introduction
  • 5.4.2. Separation of a 'pyrolidino-quinolinone' derivative
  • 5.5. Scale-up problems in early development
  • 5.5.1. Introduction
  • 5.5.2. Separation of a 'tetracyclic' compound
  • 5.5.3. Non-natural amino acids
  • 5.5.4. Separation of an 'indole' derivative
  • 5.5.5. Summary
  • 5.6. General conclusions
  • 6. Steady-state recycling and its use in chiral separations
  • 6.1. Overview
  • 6.2. Introduction
  • 6.3. SSR - concept and operation
  • 6.3.1. Concept
  • 6.3.2. Operation
  • 6.3.3. Role of the injection loop
  • 6.4. Case studies
  • 6.4.1. Case study 1
  • 6.4.2. Case study 2
  • 6.4.3. Case study 3: collection of three SSR fractions
  • 6.5. Conclusions
  • 7. Simulated moving bed and related techniques
  • 7.1. Overview
  • 7.2. The SMB concept
  • 7.3. Modeling of SMB processes
  • 7.4. Design of SMB processes
  • 7.5. Simulation of SMB processes
  • 7.5.1. Influence of the equilibrium adsorption isotherms
  • 7.5.2. Influence of mass transfer resistance
  • 7.6. SMB related techniques
  • 7.6.1. Varicol processes
  • 7.6.2. Pseudo-SMB processes
  • 8. Preparative-scale supercritical fluid chromatography
  • 8.1. Introduction
  • 8.2. History of SFC at GlaxoSmithKline
  • 8.3. Principles of SFC
  • 8.4. Advantages of SFC
  • 8.5. Drawbacks of preparative SFC
  • 8.6. Use of SFC
  • 8.7. Chiral separation using SFC
  • 8.8. Achiral separation using SFC
  • 8.9. Consideration of preparative SFC
  • 8.10. Future direction and development
  • 8.11. Conclusion
  • 9. Equipment for preparative and large size enantioselective chromatography
  • 9.1. Introduction
  • 9.2. The heart of the chromatographic process: the column
  • 9.2.1. Packing technique, bed formation and bed consolidation
  • 9.2.2. The wall region
  • 9.2.3. Heat dissipation
  • 9.2.4. Column technology
  • 9.2.5. Column design
  • 9.3. Equipment considerations for batch chromatography
  • 9.3.1. Recycling
  • 9.3.2. Detection
  • 9.4. Supercritical fluid chromatography
  • 9.4.1. Principle
  • 9.4.2. Technical aspects
  • 9.4.3. Eluent
  • 9.4.4. Pumping
  • 9.4.5. Injection
  • 9.4.6. Detection
  • 9.4.7. Product recovery
  • 9.4.8. Eluent recycling
  • 9.4.9. High-pressure technology, safety aspects
  • 9.5. Multicolumn continuous chromatographic processes
  • 9.5.1. Simulated moving bed
  • 9.5.2. VARICOL
  • 10. Case study in production-scale multicolumn continuous chromatography
  • 10.1. Introduction
  • 10.2. Chromatographic process research
  • 10.2.1. Introduction
  • 10.2.2. Selection of racemate to separate
  • 10.2.3. Choice of the chromatographic conditions
  • 10.2.4. Choice of the separation technique
  • 10.3. Process development
  • 10.3.1. Optimisation of the chemical steps
  • 10.4. Production facts
  • 10.4.1. Introduction
  • 10.4.2. Implementation in a cGMP production environment
  • 10.4.3. Qualification
  • 10.4.4. Validation
  • 10.4.5. Production and maintenance data
  • 10.5. Further areas of development
  • 11. Contract manufacturing and outsourcing considerations
  • 11.1. Introduction
  • 11.2. The regulatory agencies and the chiral market
  • 11.3. Contract manufacturing
  • 11.3.1. Time constraints
  • 11.3.2. Risk of capital investment
  • 11.3.3. Expertise
  • 11.3.4. Intellectual property
  • 11.3.5. Location
  • 11.3.6. Primary or secondary supplier
  • 11.4. Selecting the outsourcing partner
  • 11.4.1. Expectations
  • 11.4.2. Audit
  • 11.4.3. Decision grid
  • 11.5. Communication
  • 11.5.1. Contact matrix
  • 11.5.2. Frequent updates
  • 11.6. Project requirements
  • 11.6.1. R&D - method development
  • 11.6.2. Clinical trial quantities
  • 11.6.3. Trial runs vs production runs
  • 11.6.4. Commercial-scale quantities
  • 11.6.5. Schedule
  • 11.6.6. Quantity
  • 11.6.7. Product quality
  • 11.7. Transfer of information
  • 11.7.1. Feed characterization
  • 11.7.2. Separation conditions
  • 11.7.3. The chiral stationary phase
  • 11.7.4. Analytical methods
  • 11.7.5. Impurity specifications
  • 11.7.6. Final product
  • 11.7.7. Other considerations
  • 11.7.8. End of the project
  • 11.8. Economics
  • 11.8.1. Productivity
  • 11.8.2. Production rate
  • 11.8.3. Cost breakdown
  • 11.8.4. Clinical trial quantities
  • 11.8.5. Commercial-scale quantities
  • 11.9. Conclusion
  • Appendix. Advanced concepts
  • Index