The congruences of a finite lattice : a proof-by-picture approach /

Saved in:
Bibliographic Details
Author / Creator:Gratzer, George A.
Imprint:Boston ; Basel : Birkhäuser, c2006.
Description:xxii, 281 p. : ill. ; 24 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/5789333
Hidden Bibliographic Details
ISBN:0817632247
Notes:Includes bibliographical references (p. [265]-273) and index.
Standard no.:9780817632243
Table of Contents:
  • Preface
  • Glossary of Notation
  • Picture Gallery
  • Acknowledgments
  • I. A Brief Introduction to Lattices
  • 1. Basic Concepts
  • 1.1. Ordering
  • 1.1.1. Orders
  • 1.1.2. Diagrams
  • 1.1.3. Order constructions
  • 1.1.4. Partitions
  • 1.2. Lattices and semilattices
  • 1.2.1. Lattices
  • 1.2.2. Semilattices and closure systems
  • 1.3. Some algebraic concepts
  • 1.3.1. Homomorphisms
  • 1.3.2. Sublattices
  • 1.3.3. Congruences
  • 2. Special Concepts
  • 2.1. Elements and lattices
  • 2.2. Direct and subdirect products
  • 2.3. Polynomials and identities
  • 2.4. Gluting
  • 2.5. Modular and distributive lattices
  • 2.5.1. The characterization theorems
  • 2.5.2. Finite distributive lattices
  • 2.5.3. Finite modular lattices
  • 3. Congruences
  • 3.1. Congruence spreading
  • 3.2. Prime intervals
  • 3.3. Congruence-preserving extensions and variants
  • II. Basic Techniques
  • 4. Chopped Lattices
  • 4.1. Basic definitions
  • 4.2. Compatible vectors of elements
  • 4.3. Compatible vectors of congruences
  • 4.4. From the chopped lattice to the ideal lattice
  • 4.5. Sectional complementation
  • 5. Boolean Triples
  • 5.1. The general construction
  • 5.2. The congruence-preserving extension property
  • 5.3. The distributive case
  • 5.4. Two interesting intervals
  • 6. Cubic Extensions
  • 6.1. The construction
  • 6.2. The basic property
  • III. Representation Theorems
  • 7. The Dilworth Theorem
  • 7.1. The representation theorem
  • 7.2. Proof-by-Picture
  • 7.3. Computing
  • 7.4. Sectionally complemented lattices
  • 7.5. Discussion
  • 8. Minimal Representations
  • 8.1. The results
  • 8.2. Proof-by-Picture for minimal construction
  • 8.3. The formal construction
  • 8.4. Proof-by-Picture for minimality
  • 8.5. Computing minimality
  • 8.6. Discussion
  • 9. Semimodular Lattices
  • 9.1. The representation theorem
  • 9.2. Proof-by-Picture
  • 9.3. Construction and proof
  • 9.4. Discussion
  • 10. Modular Lattices
  • 10.1. The representation theorem
  • 10.2. Proof-by-Picture
  • 10.3. Construction and proof
  • 10.4. Discussion
  • 11. Uniform Lattices
  • 11.1. The representation theorem
  • 11.2. Proof-by-Picture
  • 11.3. The lattice N (A, B)
  • 11.4. Formal proof
  • 11.5. Discussion
  • IV. Extensions
  • 12. Sectionally Complemented Lattices
  • 12.1. The extension theorem
  • 12.2. Proof-by-Picture
  • 12.3. Simple extensions
  • 12.4. Formal proof
  • 12.5. Discussion
  • 13. Semimodular Lattices
  • 13.1. The extension theorem
  • 13.2. Proof-by-Picture
  • 13.3. The conduit
  • 13.4. The construction
  • 13.5. Formal proof
  • 13.6. Discussion
  • 14. Isoform Lattices
  • 14.1. The result
  • 14.2. Proof-by-Picture
  • 14.3. Formal construction
  • 14.4. The congruences
  • 14.5. The isoform property
  • 14.6. Discussion
  • 15. Independence Theorems
  • 15.1. Results
  • 15.2. Proof-by-Picture
  • 15.2.1. Frucht lattices
  • 15.2.2. An automorphism-preserving simple extension
  • 15.2.3. A congruence-preserving rigid extension
  • 15.2.4. Merging the two extensions
  • 15.2.5. The representation theorems
  • 15.3. Formal proofs
  • 15.3.1. An automorphism-preserving simple extension
  • 15.3.2. A congruence-preserving rigid extension
  • 15.3.3. Proof of the independence theorems
  • 15.4. Discussion
  • 16. Magic Wands
  • 16.1. Constructing congruence lattices
  • 16.1.1. Bijective maps
  • 16.1.2. Surjective maps
  • 16.2. Proof-by-Picture for bijective maps
  • 16.3. Verification for bijective maps
  • 16.4. 2/3-boolean triples
  • 16.5. Proof-by-Picture for surjective maps
  • 16.6. Verification for surjective maps
  • 16.7. Discussion
  • V. Two Lattices
  • 17. Sublattices
  • 17.1. The results
  • 17.2. Proof-by-Picture
  • 17.3. Multi-coloring
  • 17.4. Formal proof
  • 17.5. Discussion
  • 18. Ideals
  • 18.1. The results
  • 18.2. Proof-by-Picture for the main result
  • 18.3. A very formal proof: Main result
  • 18.3.1. Categoric preliminaries
  • 18.3.2. From Di to Or
  • 18.3.3. From Or to He
  • 18.3.4. From Ch to Di
  • 18.3.5. From He to Ch
  • 18.3.6. From Ch to La
  • 18.3.7. The final step
  • 18.4. Proof for sectionally complemented lattices
  • 18.5. Proof-by-Picture for planar lattices
  • 18.6. Discussion
  • 19. Tensor Extensions
  • 19.1. The problem
  • 19.2. Three unary functions
  • 19.3. Defining tensor extensions
  • 19.4. Computing
  • 19.4.1. Some special elements
  • 19.4.2. An embedding
  • 19.4.3. Distributive lattices
  • 19.5. Congruences
  • 19.5.1. Congruence spreading
  • 19.5.2. Some structural observations
  • 19.5.3. Lifting congruences
  • 19.5.4. The main lemma
  • 19.6. The congruence isomorphism
  • 19.7. Discussion
  • Bibliography
  • Index