A first course in harmonic analysis /

Saved in:
Bibliographic Details
Author / Creator:Deitmar, Anton.
Edition:2nd ed.
Imprint:New York : Springer, c2005.
Description:xii, 192 p. : ill. ; 24 cm.
Language:English
Series:Universitext
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/5789373
Hidden Bibliographic Details
ISBN:0387228373
Notes:Includes bibliographical references (p. 187-189) and index.
Description
Summary:The second part of the book concludes with Plancherel's theorem in Chapter 8. This theorem is a generalization of the completeness of the Fourier series, as well as of Plancherel's theorem for the real line. The third part of the book is intended to provide the reader with a ?rst impression of the world of non-commutative harmonic analysis. Chapter 9 introduces methods that are used in the analysis of matrix groups, such as the theory of the exponential series and Lie algebras. These methods are then applied in Chapter 10 to arrive at a clas- ?cation of the representations of the group SU(2). In Chapter 11 we give the Peter-Weyl theorem, which generalizes the completeness of the Fourier series in the context of compact non-commutative groups and gives a decomposition of the regular representation as a direct sum of irreducibles. The theory of non-compact non-commutative groups is represented by the example of the Heisenberg group in Chapter 12. The regular representation in general decomposes as a direct integral rather than a direct sum. For the Heisenberg group this decomposition is given explicitly. Acknowledgements: I thank Robert Burckel and Alexander Schmidt for their most useful comments on this book. I also thank Moshe Adrian, Mark Pavey, Jose Carlos Santos, and Masamichi Takesaki for pointing out errors in the ?rst edition. Exeter, June 2004 Anton Deitmar LEITFADEN vii Leitfaden 1 2 3 5 4 6
Physical Description:xii, 192 p. : ill. ; 24 cm.
Bibliography:Includes bibliographical references (p. 187-189) and index.
ISBN:0387228373