Nonlinear analysis /

Saved in:
Bibliographic Details
Author / Creator:Gasiński, Leszek.
Imprint:Boca Raton : Chapman & Hall/CRC, 2006.
Description:xi, 971 p. ; 25 cm.
Language:English
Series:Series in mathematical analysis and applications ; v. 9
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/5809961
Hidden Bibliographic Details
Other authors / contributors:Papageorgiou, Nikolaos Socrates.
ISBN:9781584884842 (acid-free paper)
1584884843 (acid-free paper)
Notes:Includes bibliographical references (p. 925-956) and index.
Table of Contents:
  • 1. Hausdorff Measures and Capacity
  • 1.1. Measure Theoretical Background
  • 1.2. Covering Results
  • 1.3. Hausdorff Measure and Hausdorff Dimension
  • 1.4. Differentiation of Hausdorff Measures
  • 1.5. Lipschitz Functions
  • 1.6. Capacity
  • 1.7. Remarks
  • 2. Lebesgue-Bochner and Sobolev Spaces
  • 2.1. Vector-Valued Functions
  • 2.2. Lebesgue-Bochner Spaces and Evolution Triples
  • 2.3. Compactness Results
  • 2.4. Sobolev Spaces
  • 2.5. Inequalities and Embedding Theorems
  • 2.6. Fine Properties of Functions and BV-Functions
  • 2.7. Remarks
  • 3. Nonlinear Operators and Young Measures
  • 3.1. Compact and Fredholm Operators
  • 3.2. Operators of Monotone Type
  • 3.3. Accretive Operators and Semigroups of Operators
  • 3.4. The Nemytskii Operator and Integral Functions
  • 3.5. Young Measures
  • 3.6. Remarks
  • 4. Smooth and Nonsmooth Analysis and Variational Principles
  • 4.1. Differential Calculus in Banach Spaces
  • 4.2. Convex Functions
  • 4.3. Haar Null Sets and Locally Lipschitz Functions
  • 4.4. Duality and Subdifferentials
  • 4.5. Integral Functionals and Subdifferentials
  • 4.6. Variational Principles
  • 4.7. Remarks
  • 5. Critical Point Theory
  • 5.1. Deformation Results
  • 5.2. Minimax Theorems
  • 5.3. Structure of the Critical Set
  • 5.4. Multiple Critical Points
  • 5.5. Lusternik-Schnirelman Theory and Abstract Eigenvalue Problems
  • 5.6. Remarks
  • 6. Eigenvalue Problems and Maximum Principles
  • 6.1. Linear Elliptic Operators
  • 6.2. The Partial p-Laplacian
  • 6.3. The Ordinary p-Laplacian
  • 6.4. Maximum Principles
  • 6.5. Comparison Principles
  • 6.6. Remarks
  • 7. Fixed Point Theory
  • 7.1. Metric Fixed Point Theory
  • 7.2. Topological Fixed Point Theory
  • 7.3. Partial Order and Fixed Points
  • 7.4. Fixed Points of Multifunctions
  • 7.5. Remarks
  • Appendix
  • A.1. Topology
  • A.2. Measure Theory
  • A.3. Functional Analysis
  • A.4. Calculus and Nonlinear Analysis
  • List of Symbols
  • References
  • Index