Nonlinear analysis /
Saved in:
Author / Creator: | GasinĚski, Leszek. |
---|---|
Imprint: | Boca Raton : Chapman & Hall/CRC, 2006. |
Description: | xi, 971 p. ; 25 cm. |
Language: | English |
Series: | Series in mathematical analysis and applications ; v. 9 |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/5809961 |
Table of Contents:
- 1. Hausdorff Measures and Capacity
- 1.1. Measure Theoretical Background
- 1.2. Covering Results
- 1.3. Hausdorff Measure and Hausdorff Dimension
- 1.4. Differentiation of Hausdorff Measures
- 1.5. Lipschitz Functions
- 1.6. Capacity
- 1.7. Remarks
- 2. Lebesgue-Bochner and Sobolev Spaces
- 2.1. Vector-Valued Functions
- 2.2. Lebesgue-Bochner Spaces and Evolution Triples
- 2.3. Compactness Results
- 2.4. Sobolev Spaces
- 2.5. Inequalities and Embedding Theorems
- 2.6. Fine Properties of Functions and BV-Functions
- 2.7. Remarks
- 3. Nonlinear Operators and Young Measures
- 3.1. Compact and Fredholm Operators
- 3.2. Operators of Monotone Type
- 3.3. Accretive Operators and Semigroups of Operators
- 3.4. The Nemytskii Operator and Integral Functions
- 3.5. Young Measures
- 3.6. Remarks
- 4. Smooth and Nonsmooth Analysis and Variational Principles
- 4.1. Differential Calculus in Banach Spaces
- 4.2. Convex Functions
- 4.3. Haar Null Sets and Locally Lipschitz Functions
- 4.4. Duality and Subdifferentials
- 4.5. Integral Functionals and Subdifferentials
- 4.6. Variational Principles
- 4.7. Remarks
- 5. Critical Point Theory
- 5.1. Deformation Results
- 5.2. Minimax Theorems
- 5.3. Structure of the Critical Set
- 5.4. Multiple Critical Points
- 5.5. Lusternik-Schnirelman Theory and Abstract Eigenvalue Problems
- 5.6. Remarks
- 6. Eigenvalue Problems and Maximum Principles
- 6.1. Linear Elliptic Operators
- 6.2. The Partial p-Laplacian
- 6.3. The Ordinary p-Laplacian
- 6.4. Maximum Principles
- 6.5. Comparison Principles
- 6.6. Remarks
- 7. Fixed Point Theory
- 7.1. Metric Fixed Point Theory
- 7.2. Topological Fixed Point Theory
- 7.3. Partial Order and Fixed Points
- 7.4. Fixed Points of Multifunctions
- 7.5. Remarks
- Appendix
- A.1. Topology
- A.2. Measure Theory
- A.3. Functional Analysis
- A.4. Calculus and Nonlinear Analysis
- List of Symbols
- References
- Index