Mathematics of large eddy simulation of turbulent flows /

Saved in:
Bibliographic Details
Author / Creator:Berselli, L. C. (Luigi C.)
Imprint:Berlin : Springer-Verlag, c2006.
Description:xvii, 348 p. : ill. ; 24 cm.
Language:English
Series:Scientific computation, 1434-8322
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/5813342
Hidden Bibliographic Details
Other authors / contributors:Iliescu, T. (Traian)
Layton, W. J. (William J.)
ISBN:3540263160
Notes:Includes bibliographical references and index.
Standard no.:9783540263166
Table of Contents:
  • Part I. Introduction
  • 1. Introduction
  • 1.1. Characteristics of Turbulence
  • 1.2. What are Useful Averages?
  • 1.3. Conventional Turbulence Models
  • 1.4. Large Eddy Simulation
  • 1.5. Problems with Boundaries
  • 1.6. The Interior Closure Problem in LES
  • 1.7. Eddy Viscosity Closure Models in LES
  • 1.8. Closure Models Based on Systematic Approximation
  • 1.9. Mixed Models
  • 1.10. Numerical Validation and Testing in LES
  • 2. The Navier-Stokes Equations
  • 2.1. An Introduction to the NSE
  • 2.2. Derivation of the NSE
  • 2.3. Boundary Conditions
  • 2.4. A Few Results on the Mathematics of the NSE
  • 2.4.1. Notation and Function Spaces
  • 2.4.2. Weak Solutions in the Sense of Leray-Hopf
  • 2.4.3. The Energy Balance
  • 2.4.4. Existence of Weak Solutions
  • 2.4.5. More Regular Solutions
  • 2.5. Some Remarks on the Euler Equations
  • 2.6. The Stochastic Navier-Stokes Equations
  • 2.7. Conclusions
  • Part II. Eddy Viscosity Models
  • 3. Introduction to Eddy Viscosity Models
  • 3.1. Introduction
  • 3.2. Eddy Viscosity Models
  • 3.3. Variations on the Smagorinsky Model
  • 3.3.1. Van Driest Damping
  • 3.3.2. Alternate Scalings
  • 3.3.3. Models Acting Only on the Smallest Resolved Scales
  • 3.3.4. Germano's Dynamic Model
  • 3.4. Mathematical Properties of the Smagorinsky Model
  • 3.4.1. Further Properties of Monotone Operators
  • 3.5. Backscatter and the Eddy Viscosity Models
  • 3.6. Conclusions
  • 4. Improved Eddy Viscosity Models
  • 4.1. Introduction
  • 4.2. The Gaussian-Laplacian Model (GL)
  • 4.2.1. Mathematical Properties
  • 4.3. [kappa] - [epsilon] Modeling
  • 4.3.1. Selective Models
  • 4.4. Conclusions
  • 5. Uncertainties in Eddy Viscosity Models and Improved Estimates of Turbulent Flow Functionals
  • 5.1. Introduction
  • 5.2. The Sensitivity Equations of Eddy Viscosity Models
  • 5.2.1. Calculating [characters not reproducible]
  • 5.2.2. Boundary Conditions for the Sensitivities
  • 5.3. Improving Estimates of Functionals of Turbulent Quantities
  • 5.4. Conclusions: Are u and p Enough?
  • Part III. Advanced Models
  • 6. Basic Criteria for Subfilter-scale Modeling
  • 6.1. Modeling the Subfilter-scale Stresses
  • 6.2. Requirements for a Satisfactory Closure Model
  • 7. Closure Based on Wavenumber Asymptotics
  • 7.1. The Gradient (Taylor) LES Model
  • 7.1.1. Derivation of the Gradient LES Model
  • 7.1.2. Mathematical Analysis of the Gradient LES Model
  • 7.1.3. Numerical Validation and Testing
  • 7.2. The Rational LES Model (RLES)
  • 7.2.1. Mathematical Analysis for the Rational LES Model
  • 7.2.2. On the Breakdown of Strong Solutions
  • 7.2.3. Numerical Validation and Testing
  • 7.3. The Higher-order Subfilter-scale Model (HOSFS)
  • 7.3.1. Derivation of the HOSFS Model
  • 7.3.2. Mathematical Analysis of the HOSFS Model
  • 7.3.3. Numerical Validation and Testing
  • 7.4. Conclusions
  • 8. Scale Similarity Models
  • 8.1. Introduction
  • 8.1.1. The Bardina Model
  • 8.2. Other Scale Similarity Models
  • 8.2.1. Germano Dynamic Model
  • 8.2.2. The Filtered Bardina Model
  • 8.2.3. The Mixed-scale Similarity Model
  • 8.3. Recent Ideas in Scale Similarity Models
  • 8.4. The S[superscript 4] = Skew-symmetric Scale Similarity Model
  • 8.4.1. Analysis of the Model
  • 8.4.2. Limit Consistency and Verifiability of the S[superscript 4] Model
  • 8.5. The First Energy-sponge Scale Similarity Model
  • 8.5.1. "More Accurate" Models
  • 8.6. The Higher Order, Stolz-Adams Deconvolution Models
  • 8.6.1. The van Cittert Approximations
  • 8.7. Conclusions
  • Part IV. Boundary Conditions
  • 9. Filtering on Bounded Domains
  • 9.1. Filters with Nonconstant Radius
  • 9.1.1. Definition of the Filtering
  • 9.1.2. Some Estimates of the Commutation Error
  • 9.2. Filters with Constant Radius
  • 9.2.1. Derivation of the Boundary Commutation Error (BCE)
  • 9.2.2. Estimates of the BCE
  • 9.2.3. Error Estimates for a Weak Form of the BCE
  • 9.2.4. Numerical Approximation of the BCE
  • 9.3. Conclusions
  • 10. Near Wall Models in LES
  • 10.1. Introduction
  • 10.2. Wall Laws in Conventional Turbulence Modeling
  • 10.3. Current Ideas in Near Wall Modeling for LES
  • 10.4. New Perspectives in Near Wall Models
  • 10.4.1. The 1/7th Power Law in 3D
  • 10.4.2. The 1/nth Power Law in 3D
  • 10.4.3. A Near Wall Model for Recirculating Flows
  • 10.4.4. A NWM for Time-fluctuating Quantities
  • 10.4.5. A NWM for Reattachment and Separation Points
  • 10.5. Conclusions
  • Part V. Numerical Tests
  • 11. Variational Approximation of LES Models
  • 11.1. Introduction
  • 11.2. LES Models and their Variational Approximation
  • 11.2.1. Variational Formulation
  • 11.3. Examples of Variational Methods
  • 11.3.1. Spectral Methods
  • 11.3.2. Finite Element Methods
  • 11.3.3. Spectral Element Methods
  • 11.4. Numerical Analysis of Variational Approximations
  • 11.5. Introduction to Variational Multiscale Methods (VMM)
  • 11.6. Eddy Viscosity Acting on Fluctuations as a VMM
  • 11.7. Conclusions
  • 12. Test Problems for LES
  • 12.1. General Comments
  • 12.2. Turbulent Channel Flows
  • 12.2.1. Computational Setting
  • 12.2.2. Definition of Re[subscript tau]
  • 12.2.3. Initial Conditions
  • 12.2.4. Statistics
  • 12.2.5. LES Models Tested
  • 12.2.6. Numerical Method and Numerical Setting
  • 12.2.7. A Posteriori Tests for Re[subscript tau] = 180
  • 12.2.8. A Posteriori Tests for Re[subscript tau] = 395
  • 12.2.9. Backscatter in the Rational LES Model
  • 12.2.10. Numerical Results
  • 12.2.11. Summary of Results
  • 12.3. A Few Remarks on Isotropic Homogeneous Turbulence
  • 12.3.1. Computational Setting
  • 12.3.2. Initial Conditions
  • 12.3.3. Experimental Results
  • 12.3.4. Computational Cost
  • 12.3.5. LES of the Comte-Bellot Corrsin Experiment
  • 12.4. Final Remarks
  • References
  • Index