Modern differential geometry in gauge theories /

Saved in:
Bibliographic Details
Author / Creator:Mallios, Anastasios.
Imprint:Boston : Birkhäuser, c2006-
Description:v. : ill. ; 24 cm.
Language:English
Series:Progress in mathematical physics ; v. 41-42
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/5822008
Hidden Bibliographic Details
ISBN:0817643788 (v. 1 : alk. paper)
0817643796 (v. 2 : alk. paper)
Notes:Includes bibliographical references and indexes.
Table of Contents:
  • General Preface
  • Preface to Volume I
  • Acknowledgements
  • Part I. Maxwell Fields: General Theory
  • 1. The Rudiments of Abstract Differential Geometry
  • 1. The Differential Setting
  • 1.1. Logarithmic Derivation
  • 2. A-Connections
  • 2.1. The Classical Case
  • 2.2. Local Definition of an A-Connection
  • 2.3. Gauge Transformation
  • 3. Induced A-Connections
  • 4. Existence of A-Connections. Criteria of Existence
  • 5. The Space of A-Connections
  • 6. Related A-Connections. Moduli Space of A-Connections
  • 6.1. Moduli Space
  • 7. Curvature
  • 7.1. Local Form of the Curvature
  • 7.2. Transformation Law of Field Strength (Curvature)
  • 8. Fundamental Identities of the Curvature (Continued). Torsion
  • 8.1. Pullback of Curvature
  • 8.2. Torsion
  • 9. A-Connections Compatible with A-Metrics
  • 9.1. Hermitian A-Connections
  • 9.2. Matrices of A-Metrics
  • 9.3. Kahler A-Metrics
  • 9.4. Einstein A-Metrics
  • 9.5. Lorentz A-Metrics
  • 10. The Hodge *-Operator. Volume Form
  • 2. Elementary Particles: Sheaf-Theoretic Classification, by Spin-Structure, According to Selesnick's Correspondence Principle
  • 1. Preliminaries. Basic Notions
  • 2. Classification of Elementary Particles, Through Vector Sheaves, According to Their Spin-Structures
  • 2.1. Standard Classification of Elementary Particles by Spin Number
  • 2.2. Classification of Elementary Particles Through Module-Structures (a la Selesnick)
  • 3. Quantum State Modules
  • 4. Free Bosons and Fermions in Terms of Finitely Generated Projective Modules
  • 5. Finitely Generated Projective Modules and Vector Bundles (Serre-Swan Theory)
  • 6. Vector Sheaves and Elementary Particles (Continued: Selesnick's Correspondence)
  • 6.1. Smooth (C[superscript infinity]-) Case
  • 7. Cohomological Classification of Elementary Particles
  • 7.1. Vector Sheaves
  • 7.2. Line Sheaves
  • 7.3. Elementary Particles
  • 8. Elementary Particles as Principal Sheaves
  • 8.1. Principal Sheaves
  • 9. Vector Sheaves Associated with Principal Sheaves and Physical Interpretation
  • 9.1. Physical Applications
  • 9.2. Interacting Particles
  • 3. Electromagnetism
  • 1. The Electromagnetic Field. The Maxwell Category
  • 2. Characterization of the Maxwell Group Through Local Data
  • 2.1. Local Characterization of Maxwell Fields
  • 2.2. Local Characterization of (Gauge) Equivalent Maxwell Fields
  • 3. A Natural Fibration
  • 3.1. The Image of (the Natural Fibration) [tau]
  • 3.2. Weil's Integrality Theorem (Again)
  • 3.3. The Image of the Map [tau] (Continued)
  • 3.4. Cohomology Class Associated with the Field Strength of a Maxwell Field (Continued)
  • 4. The Fibration [tau] as a Group Morphism
  • 5. Action of H[superscript 1] (X, C[Characters not reproducible]) on the Maxwell Group [Phi][Characters not reproducible](X)[superscript nabla]
  • 5.1. Freeness of the Action of H[superscript 1](X, C[Characters not reproducible]) on the Maxwell Group
  • 5.2. Transitivity of the Action of H[superscript 1](X, C[Characters not reproducible]) on the Maxwell Group
  • 5.3. [Phi][Characters not reproducible](X)[Characters not reproducible] as a Principal Homogeneous Space
  • 6. The Hermitian Counterpart
  • 6.1. Action of H[superscript 1] (X, S[superscript 1]) on [Phi][Characters not reproducible](X)[superscript nabla]
  • 6.2. Hermitian Maxwell Fields
  • 6.3. Hermitian Light Bundles
  • 6.4. Hermitian Light Bundles over Path-Connected Spaces
  • 7. Equivariant Actions of H[superscript 1](X, C[Characters not reproducible]) (Continued)
  • 7.1. The Kernel of the Map [tau]
  • 7.2. Hermitian Counterpart (Continued)
  • 8. The Maxwell Group [Phi][Characters not reproducible](X)[superscript nabla] as a Central Extension (Continued)
  • 8.1. The Hermitian Counterpart (Continued)
  • 4. Cohomological Classification of Maxwell and Hermitian Maxwell Fields
  • 1. Hypercohomology with Respect to a (Differential) A-Complex
  • 1.1. Sheaf Cohomology
  • 1.2. Hypercohomology
  • 2. Cech Hypercohomology
  • 3. Cech Hypercohomology Relative to a Two-Term A-Complex
  • 3.1. Identification of H[superscript 1] (X,[epsilon superscript 0] [Characters not reproducible] [epsilon superscript 1])
  • 4. Cech Hypercohomology, with Respect to the Two-Term Z-Complex A[Characters not reproducible] [Characters not reproducible] [Omega superscript 1]
  • 4.1. Characterization of the (Abelian) Cech Hypercohomology Group H[superscript 1] (X, A[Characters not reproducible] [Characters not reproducible] [Omega superscript 1])
  • 5. Cohomological Wording of the Maxwell Group
  • 6. Abstract Maxwell Equations
  • 7. The Hermitian Analogue
  • 5. Geometric Prequantization
  • 1. Symplectic Sheaves
  • 2. Prequantizable Symplectic Sheaves
  • 3. The Hermitian Framework
  • 4. Cohomological Classification of (Abstract) Geometric Prequantizations of Hermitian Maxwell Fields with a Given Field Strength
  • 5. Prequantization of Elementary Particles
  • 5.1. Bosonic Case
  • 5.2. The Chern Isomorphism (Continued), and Consequences
  • 5.3. Geometric Prequantization of Bosons (Continued)
  • 5.4. Fermionic Case
  • 5.5. Pull-Back of Maxwell Fields
  • 5.6. Geometric Prequantization of Fermions (Continued)
  • References
  • Index of Notation
  • Index