Coherent sources of XUV radiation : soft X-ray lasers and high-order harmonic generation /
Saved in:
Author / Creator: | Jaeglé, Pierre. |
---|---|
Imprint: | New York : Springer, 2006. |
Description: | xiii, 416 p. : ill. ; 24 cm. |
Language: | English |
Series: | Springer series in optical sciences ; 106 |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/5845617 |
Table of Contents:
- Part I. Introduction to Coherent Extreme-Ultraviolet and Soft X-Ray Sources
- 1. Short Survey of XUV Emission Mechanisms and Sources
- 1.1. Radiation Transfer Through Matter, Opacity, and Gain
- 1.2. Transfer Equation, Absorption, and Gain
- 1.3. Profile Functions
- 1.4. Line Narrowing
- 1.5. Atomic Level Population Densities
- 1.6. Source Brightness and Number of Photons per Mode
- 2. XUV Optics
- 2.1. XUV Optical Constants
- 2.2. Absorption, Reflection, and Refraction of XUV Radiation
- 2.3. Grazing Incidence Optics
- 2.4. Multilayer Mirrors
- 3. Coherent XUV Radiation Beams
- 3.1. Interferences and Degree of Coherence
- 3.2. Modes of Free Radiation Field
- 3.3. Three Ways of Producing Coherent XUV Radiation Beams
- References
- Part II. State of the Art and Prospect of X-Ray Lasers
- 4. Beginnings
- 4.1. Experiments
- 4.2. Pumping Mechanisms
- 5. General Features of X-Ray Lasers
- 5.1. Survey of Laser-Produced Plasma Physics
- 5.1.1. Main Parameters Related to Plasma Expansion
- 5.1.2. Atomic Physics in the Plasma Corona
- 5.2. X-Ray Laser Configurations
- 5.2.1. X-Ray Lasers Pumped by Lasers
- 5.2.2. Multiple Target Systems
- 5.2.3. Optics for the Production of Line Focused Plasmas
- 5.2.4. Capillary-Discharge XUV Laser
- 5.2.5. XUV Laser Cavity Issues
- 5.3. Diagnostics of X-Ray Laser Media
- 5.3.1. Plasma Imaging
- 5.3.2. Temperature and Density Diagnostics
- 6. Propagation of XUV Laser Beams
- 6.1. Beam Refraction
- 6.2. From Small-Signal Gain to Saturation
- 6.3. Coherence Building
- 6.4. Coherence Measurements
- 6.4.1. Coherence Characterization
- 6.4.2. Interferometric Methods
- 6.4.3. Diffractometry
- 7. Saturated XUV Lasers
- 7.1. Gain Predictions for the Collisional-Excitation Pumping Scheme
- 7.2. Single Pump-Pulse of Nanosecond Duration
- 7.2.1. Ne-Like Selenium Laser
- 7.2.2. Ne-Like Ge Laser (Saturation, Coherence, Polarization)
- 7.2.3. Ne-Like Yttrium Laser
- 7.2.4. Ne-Like Silver Laser
- 7.2.5. Ni-Like Ion Lasers
- 7.3. Pumping with Prepulses
- 7.3.1. General Characteristics of Prepulse Influence on Pumping
- 7.3.2. Prepulsed Ne-Like Zinc Laser
- 7.3.3. Prepulsed Ne-Like Germanium Laser
- 7.3.4. Ne-Like Lasers with Low Z Elements
- 7.3.5. Prepulsed Ni-Like Lasers: Sn, Sm, Dy, Pd, Ag
- 7.4. Transient Collisional Excitation (TCE) Scheme of Pumping
- 7.4.1. Traveling Wave Implementation
- 7.4.2. TCE Ne-Like Titanium Laser (32.63 nm)
- 7.4.3. TCE Ne-Like Iron Laser (25.5 nm)
- 7.4.4. TCE Ni-Like Tin Laser (11.9 nm)
- 7.4.5. TCE Ni-Like Germanium Laser (19.6 nm)
- 7.4.6. TCE Ni-Like Molybdenum Laser (18.9 nm)
- 7.4.7. TCE Ni-Like Silver Laser (13.9 nm)
- 7.5. Fast Capillary Discharge X-Ray Laser
- 7.5.1. Discharge Characteristics
- 7.5.2. Small-Signal Gain, Saturation, and Output of the Ne-Like Argon Laser
- 7.5.3. Coherence
- 7.5.4. New Lasing Materials
- 7.6. Optical-Field-Ionization Lasers
- 8. Recombination Lasers
- 8.1. Long Pump Pulses
- 8.1.1. Hydrogen-Like Ions
- 8.1.2. Lithium-Like Ions
- 8.1.3. Gain-Length Product Limitation
- 8.2. Short and Ultrashort Pump Pulses
- 9. Schemes for Future Soft X-Ray Lasers
- 9.1. Inner Shell Photopumping
- 9.2. Free Electron Lasers
- References
- Part III. High Harmonic Generation
- 10. Introduction
- 11. Survey of the Theoretical Background
- 11.1. Atoms in Strong Field
- 11.2. Phase-Matching
- 12. General Characteristics of High-Order Harmonic Emission
- 12.1. Coherence
- 12.1.1. Coherence Control
- 12.1.2. Spatial Coherence Measurements
- 12.1.3. Temporal Coherence
- 12.2. Conversion Efficiency
- 12.2.1. Scaling Law in the Plateau Region
- 12.2.2. Influence of Atomic Density
- 12.2.3. Influence of the Length of the Pumped Medium
- 12.2.4. Influence of the Diameter of Apertured Beam
- 12.2.5. Phase-Matching by Wave Guiding
- 12.2.6. Emitters of Complex Structure: Molecules, Clusters, Solid-Vacuum Interfaces
- 12.2.7. Two-Color High Harmonic Generation
- 12.2.8. Tunability
- References
- Part IV. A Survey of Coherent XUV Sources Applications
- 13. Introduction
- 13.1. Interferometry of Laser-Created Plasma
- 13.2. Interferometry and Shadography of Exploding Wire Plasma
- 13.3. Reflectometry of Solid Materials
- 14. Time-Resolution About 100 Picoseconds
- 14.1. Characterization of Dense Plasmas
- 14.1.1. Density Measurements up to 10 21 Electrons cm -3
- 14.1.2. Colliding Plasmas
- 14.1.3. Soft X-Ray Radiographic Probing of Laser-Irradiated Thin Si Foils
- 14.2. Atomic Physics
- 14.2.1. Lifetime Measurement of Excited He States
- 14.2.2. Absolute Photo-Ionization Cross-Section of Excited He-States
- 14.3. Material Properties
- 14.3.1. Snapshots of Intense Electric Field Effects on Metal Surface
- 14.3.2. CsI Crystal Luminescence Induced by Very Intense XUV Flux
- 14.4. Production of Highly Focused XUV Beams
- 14.4.1. Method of Wave Front Characterization
- 14.4.2. Measurement of the Spatial Intensity Distribution of a Soft X-Ray Laser Beam
- 15. Time-Resolution About One Picosecond
- 15.1. Picosecond X-Ray Laser Interferometry
- 15.2. Material Probe at the Picosecond Scale
- 15.2.1. Study of the Surface Domain-Structure of Ferroelectric BaTiO 3
- 15.2.2. Time-Resolved Measurement of Material Scintillation
- 15.2.3. Single-Shot Probe of Photoelectron Emission
- 16. Subfemtosecond Time-Resolution
- 16.1. Frequency-Domain Interferometry Applied to Electron-Density Measurements
- 16.2. Generation of Attosecond Pulses
- 17. Future Prospects
- 17.1. Nonlinear XUV Optics
- 17.2. Microlithography
- 17.3. Biological Applications
- References
- Index