Coherent sources of XUV radiation : soft X-ray lasers and high-order harmonic generation /

Saved in:
Bibliographic Details
Author / Creator:Jaeglé, Pierre.
Imprint:New York : Springer, 2006.
Description:xiii, 416 p. : ill. ; 24 cm.
Language:English
Series:Springer series in optical sciences ; 106
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/5845617
Hidden Bibliographic Details
ISBN:0387230076 (hbk.)
Notes:Includes bibliographical references ( p. 397-401) and index.
Table of Contents:
  • Part I. Introduction to Coherent Extreme-Ultraviolet and Soft X-Ray Sources
  • 1. Short Survey of XUV Emission Mechanisms and Sources
  • 1.1. Radiation Transfer Through Matter, Opacity, and Gain
  • 1.2. Transfer Equation, Absorption, and Gain
  • 1.3. Profile Functions
  • 1.4. Line Narrowing
  • 1.5. Atomic Level Population Densities
  • 1.6. Source Brightness and Number of Photons per Mode
  • 2. XUV Optics
  • 2.1. XUV Optical Constants
  • 2.2. Absorption, Reflection, and Refraction of XUV Radiation
  • 2.3. Grazing Incidence Optics
  • 2.4. Multilayer Mirrors
  • 3. Coherent XUV Radiation Beams
  • 3.1. Interferences and Degree of Coherence
  • 3.2. Modes of Free Radiation Field
  • 3.3. Three Ways of Producing Coherent XUV Radiation Beams
  • References
  • Part II. State of the Art and Prospect of X-Ray Lasers
  • 4. Beginnings
  • 4.1. Experiments
  • 4.2. Pumping Mechanisms
  • 5. General Features of X-Ray Lasers
  • 5.1. Survey of Laser-Produced Plasma Physics
  • 5.1.1. Main Parameters Related to Plasma Expansion
  • 5.1.2. Atomic Physics in the Plasma Corona
  • 5.2. X-Ray Laser Configurations
  • 5.2.1. X-Ray Lasers Pumped by Lasers
  • 5.2.2. Multiple Target Systems
  • 5.2.3. Optics for the Production of Line Focused Plasmas
  • 5.2.4. Capillary-Discharge XUV Laser
  • 5.2.5. XUV Laser Cavity Issues
  • 5.3. Diagnostics of X-Ray Laser Media
  • 5.3.1. Plasma Imaging
  • 5.3.2. Temperature and Density Diagnostics
  • 6. Propagation of XUV Laser Beams
  • 6.1. Beam Refraction
  • 6.2. From Small-Signal Gain to Saturation
  • 6.3. Coherence Building
  • 6.4. Coherence Measurements
  • 6.4.1. Coherence Characterization
  • 6.4.2. Interferometric Methods
  • 6.4.3. Diffractometry
  • 7. Saturated XUV Lasers
  • 7.1. Gain Predictions for the Collisional-Excitation Pumping Scheme
  • 7.2. Single Pump-Pulse of Nanosecond Duration
  • 7.2.1. Ne-Like Selenium Laser
  • 7.2.2. Ne-Like Ge Laser (Saturation, Coherence, Polarization)
  • 7.2.3. Ne-Like Yttrium Laser
  • 7.2.4. Ne-Like Silver Laser
  • 7.2.5. Ni-Like Ion Lasers
  • 7.3. Pumping with Prepulses
  • 7.3.1. General Characteristics of Prepulse Influence on Pumping
  • 7.3.2. Prepulsed Ne-Like Zinc Laser
  • 7.3.3. Prepulsed Ne-Like Germanium Laser
  • 7.3.4. Ne-Like Lasers with Low Z Elements
  • 7.3.5. Prepulsed Ni-Like Lasers: Sn, Sm, Dy, Pd, Ag
  • 7.4. Transient Collisional Excitation (TCE) Scheme of Pumping
  • 7.4.1. Traveling Wave Implementation
  • 7.4.2. TCE Ne-Like Titanium Laser (32.63 nm)
  • 7.4.3. TCE Ne-Like Iron Laser (25.5 nm)
  • 7.4.4. TCE Ni-Like Tin Laser (11.9 nm)
  • 7.4.5. TCE Ni-Like Germanium Laser (19.6 nm)
  • 7.4.6. TCE Ni-Like Molybdenum Laser (18.9 nm)
  • 7.4.7. TCE Ni-Like Silver Laser (13.9 nm)
  • 7.5. Fast Capillary Discharge X-Ray Laser
  • 7.5.1. Discharge Characteristics
  • 7.5.2. Small-Signal Gain, Saturation, and Output of the Ne-Like Argon Laser
  • 7.5.3. Coherence
  • 7.5.4. New Lasing Materials
  • 7.6. Optical-Field-Ionization Lasers
  • 8. Recombination Lasers
  • 8.1. Long Pump Pulses
  • 8.1.1. Hydrogen-Like Ions
  • 8.1.2. Lithium-Like Ions
  • 8.1.3. Gain-Length Product Limitation
  • 8.2. Short and Ultrashort Pump Pulses
  • 9. Schemes for Future Soft X-Ray Lasers
  • 9.1. Inner Shell Photopumping
  • 9.2. Free Electron Lasers
  • References
  • Part III. High Harmonic Generation
  • 10. Introduction
  • 11. Survey of the Theoretical Background
  • 11.1. Atoms in Strong Field
  • 11.2. Phase-Matching
  • 12. General Characteristics of High-Order Harmonic Emission
  • 12.1. Coherence
  • 12.1.1. Coherence Control
  • 12.1.2. Spatial Coherence Measurements
  • 12.1.3. Temporal Coherence
  • 12.2. Conversion Efficiency
  • 12.2.1. Scaling Law in the Plateau Region
  • 12.2.2. Influence of Atomic Density
  • 12.2.3. Influence of the Length of the Pumped Medium
  • 12.2.4. Influence of the Diameter of Apertured Beam
  • 12.2.5. Phase-Matching by Wave Guiding
  • 12.2.6. Emitters of Complex Structure: Molecules, Clusters, Solid-Vacuum Interfaces
  • 12.2.7. Two-Color High Harmonic Generation
  • 12.2.8. Tunability
  • References
  • Part IV. A Survey of Coherent XUV Sources Applications
  • 13. Introduction
  • 13.1. Interferometry of Laser-Created Plasma
  • 13.2. Interferometry and Shadography of Exploding Wire Plasma
  • 13.3. Reflectometry of Solid Materials
  • 14. Time-Resolution About 100 Picoseconds
  • 14.1. Characterization of Dense Plasmas
  • 14.1.1. Density Measurements up to 10 21 Electrons cm -3
  • 14.1.2. Colliding Plasmas
  • 14.1.3. Soft X-Ray Radiographic Probing of Laser-Irradiated Thin Si Foils
  • 14.2. Atomic Physics
  • 14.2.1. Lifetime Measurement of Excited He States
  • 14.2.2. Absolute Photo-Ionization Cross-Section of Excited He-States
  • 14.3. Material Properties
  • 14.3.1. Snapshots of Intense Electric Field Effects on Metal Surface
  • 14.3.2. CsI Crystal Luminescence Induced by Very Intense XUV Flux
  • 14.4. Production of Highly Focused XUV Beams
  • 14.4.1. Method of Wave Front Characterization
  • 14.4.2. Measurement of the Spatial Intensity Distribution of a Soft X-Ray Laser Beam
  • 15. Time-Resolution About One Picosecond
  • 15.1. Picosecond X-Ray Laser Interferometry
  • 15.2. Material Probe at the Picosecond Scale
  • 15.2.1. Study of the Surface Domain-Structure of Ferroelectric BaTiO 3
  • 15.2.2. Time-Resolved Measurement of Material Scintillation
  • 15.2.3. Single-Shot Probe of Photoelectron Emission
  • 16. Subfemtosecond Time-Resolution
  • 16.1. Frequency-Domain Interferometry Applied to Electron-Density Measurements
  • 16.2. Generation of Attosecond Pulses
  • 17. Future Prospects
  • 17.1. Nonlinear XUV Optics
  • 17.2. Microlithography
  • 17.3. Biological Applications
  • References
  • Index