|
|
|
|
LEADER |
00000nam a2200000 a 4500 |
001 |
5895104 |
003 |
ICU |
005 |
20070724114000.0 |
008 |
060309s2005 enka b 001 0 eng d |
015 |
|
|
|a GBA635490
|2 bnb
|
016 |
7 |
|
|a 013432875
|2 Uk
|
020 |
|
|
|a 1860945880 (Pbk.)
|
020 |
|
|
|a 1860945864
|
040 |
|
|
|a EQO
|c EQO
|d BAKER
|d UAT
|d UKM
|d IXA
|d OrLoB-B
|d UtOrBLW
|
050 |
|
4 |
|a QB843.B55
|b R35 2005
|
050 |
|
4 |
|a QB843.B55
|b RAI
|
082 |
0 |
4 |
|a 523.8875
|2 22
|
090 |
|
|
|a QB843.B55
|b R35 2005
|
100 |
1 |
|
|a Raine, Derek J.,
|d 1946-
|0 http://id.loc.gov/authorities/names/n82032349
|1 http://viaf.org/viaf/109175187
|
245 |
1 |
0 |
|a Black holes :
|b an introduction /
|c Derek Raine & Edwin Thomas.
|
260 |
|
|
|a London :
|b Imperial College Press,
|c c2005.
|
300 |
|
|
|a xi, 155 p. :
|b ill. ;
|c 23 cm.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|0 http://id.loc.gov/vocabulary/contentTypes/txt
|
337 |
|
|
|a unmediated
|b n
|2 rdamedia
|0 http://id.loc.gov/vocabulary/mediaTypes/n
|
338 |
|
|
|a volume
|b nc
|2 rdacarrier
|0 http://id.loc.gov/vocabulary/carriers/nc
|
504 |
|
|
|a Includes bibliographical references (p. [147]-[151]) and index.
|
505 |
0 |
0 |
|g 1.
|t Relativistic Gravity --
|g 1.1.
|t What is a black hole? --
|g 1.2.
|t Why study black holes? --
|g 1.3.
|t Elements of general relativity --
|g 1.3.1.
|t The principle of equivalence --
|g 1.3.2.
|t The Newtonian affine connection --
|g 1.3.3.
|t Newtonian gravity --
|g 1.3.4.
|t Metrics in relativity --
|g 1.3.5.
|t The velocity and momentum 4-vector --
|g 1.3.6.
|t General vectors and tensors --
|g 1.3.7.
|t Locally measured physical properties --
|g 1.3.8.
|t Derivatives in relativity --
|g 1.3.9.
|t Acceleration 4-vector --
|g 1.3.10.
|t Paths of light --
|g 1.3.11.
|t Einstein's field equations --
|g 1.3.12.
|t Symmetry and Killing's equation --
|g 2.
|t Spherical Black Holes --
|g 2.1.
|t The Schwarzschild metric --
|g 2.1.1.
|t Coordinates --
|g 2.1.2.
|t Proper distance --
|g 2.1.3.
|t Proper time --
|g 2.1.4.
|t Redshift --
|g 2.1.5.
|t Interpretation of M and geometric units --
|g 2.1.6.
|t The Schwarzschild radius --
|g 2.1.7.
|t The event horizon --
|g 2.1.8.
|t Birkoff's theorem --
|g 2.1.9.
|t Israel's theorem --
|g 2.2.
|t Orbits in Newtonian gravity --
|g 2.2.1.
|t Energy --
|g 2.2.2.
|t Angular momentum --
|g 2.2.3.
|t The Newtonian effective potential --
|g 2.2.4.
|t Classification of Newtonian orbits --
|g 2.3.
|t Particle orbits in the Schwarzschild metric --
|g 2.3.1.
|t Constants of the motion --
|g 2.3.2.
|t Energy --
|g 2.3.3.
|t Angular momentum --
|g 2.3.4.
|t The effective potential --
|g 2.3.5.
|t Newtonian approximation to the metric --
|g 2.3.6.
|t Classification of orbits --
|g 2.3.7.
|t Radial infall --
|g 2.3.8.
|t The locally measured energy of a particle --
|g 2.3.9.
|t Circular orbits --
|g 2.3.10.
|t Comparison with Newtonian orbits --
|g 2.3.11.
|t Orbital velocity in the frame of a hovering observer --
|g 2.3.12.
|t Energy in the last stable orbit --
|g 2.4.
|t Orbits of light rays --
|g 2.4.1.
|t Radial propagation of light --
|g 2.4.2.
|t Capture cross-section for light --
|g 2.4.3.
|t The view of the sky for a stationary observer --
|g 2.5.
|t Classical tests --
|g 2.6.
|t Falling into a black hole --
|g 2.6.1.
|t Free-fall time for a distant observer --
|g 2.6.2.
|t Light-travel time --
|g 2.6.3.
|t What the external observer sees --
|g 2.6.4.
|t An infalling observer's time --
|g 2.6.5.
|t What the infalling observer feels --
|g 2.7.
|t Capture by a black hole --
|g 2.7.1.
|t Case I: Capture of high angular momentum particles --
|g 2.7.2.
|t Case II: Capture of low energy particles --
|g 2.8.
|t Surface gravity of a black hole --
|g 2.8.1.
|t The proper acceleration of a hovering observer --
|g 2.8.2.
|t Surface gravity --
|g 2.8.3.
|t Rindler coordinates --
|g 2.9.
|t Other coordinates --
|g 2.9.1.
|t Null coordinates --
|g 2.9.2.
|t Eddington-Finkelstein coordinates --
|g 2.10.
|t Inside the black hole --
|g 2.10.1.
|t The infalling observer --
|g 2.11.
|t White holes --
|g 2.12.
|t Kruskal coordinates --
|g 2.12.1.
|t The singularities at r = 0 and cosmic censorship --
|g 2.12.2.
|t The spacetime of a collapsing star --
|g 2.13.
|t Embedding diagrams --
|g 2.14.
|t Asymptotic flatness --
|g 2.14.1.
|t The Penrose-Carter diagram for the Schwarzschild metric --
|g 2.14.2.
|t The Penrose-Carter diagram for the Newtonian metric --
|g 2.15.
|t Non-isolated black holes --
|g 2.15.1.
|t The infinite redshift surface --
|g 2.15.2.
|t Trapped surfaces --
|g 2.15.3.
|t Apparent horizon --
|g 2.16.
|t The membrane paradigm --
|g 3.
|t Rotating Black Holes --
|g 3.1.
|t The Kerr metric --
|g 3.2.
|t The event horizon --
|g 3.2.1.
|t The circumference of the event horizon --
|g 3.2.2.
|t The area of the event horizon --
|g 3.3.
|t Properties of the Kerr metric coefficients --
|g 3.3.1.
|t Identities --
|g 3.3.2.
|t Contravariant components --
|g 3.4.
|t Interpretation of m, a and geometric units --
|g 3.5.
|t Extreme Kerr black hole --
|g 3.6.
|t Robinson's theorem --
|g 3.7.
|t Particle orbits in the Kerr geometry --
|g 3.7.1.
|t Constants of the motion --
|g 3.7.2.
|t Energy --
|g 3.7.3.
|t Angular momentum --
|g 3.7.4.
|t The Carter integral --
|g 3.7.5.
|t The radial equation --
|g 3.7.6.
|t The effective potential --
|g 3.8.
|t Frame-dragging --
|g 3.8.1.
|t Orbits of zero angular momentum particles --
|g 3.8.2.
|t Orbits with non-zero angular momentum --
|g 3.9.
|t Zero angular momentum observers (ZAMOs) --
|g 3.9.1.
|t Some applications of ZAMOs --
|g 3.10.
|t Photon orbits --
|g 3.10.1.
|t The photon effective potential --
|g 3.10.2.
|t Azimuthal motion --
|g 3.10.3.
|t Photon capture cross-section --
|g 3.11.
|t The static limit surface --
|g 3.12.
|t The infinite redshift surface --
|g 3.13.
|t Circular orbits in the equatorial plane --
|g 3.13.1.
|t Innermost (marginally) stable circular orbit --
|g 3.13.2.
|t Period of a circular orbit --
|g 3.13.3.
|t Energy of the innermost stable orbit --
|g 3.13.4.
|t Angular momentum of the innermost stable orbit --
|g 3.13.5.
|t Marginally bound orbits --
|g 3.13.6.
|t Unbound orbits --
|g 3.14.
|t Polar orbits --
|g 3.14.1.
|t Orbital period --
|g 3.15.
|t The ergosphere --
|g 3.15.1.
|t Negative energy orbits --
|g 3.15.2.
|t Angular momentum of a negative energy particle --
|g 3.15.3.
|t The Penrose process --
|g 3.15.4.
|t Realising the Penrose process --
|g 3.16.
|t Spinning up a black hole --
|g 3.16.1.
|t From Schwarzschild to extreme Kerr black hole --
|g 3.17.
|t Other coordinates --
|g 3.18.
|t Penrose-Carter diagram --
|g 3.18.1.
|t Interior solutions and collapsing stars --
|g 3.19.
|t Closed timelike lines --
|g 3.20.
|t Charged black holes --
|g 4.
|t Black Hole Thermodynamics --
|g 4.1.
|t Black hole mechanics --
|g 4.1.1.
|t Surface gravity --
|g 4.1.2.
|t Redshift --
|g 4.1.3.
|t Conservation of energy --
|g 4.2.
|t The area of a Kerr black hole horizon cannot decrease --
|g 4.2.1.
|t Area change by accretion --
|g 4.2.2.
|t Area change produced by the Penrose process --
|g 4.2.3.
|t The area theorem --
|g 4.2.4.
|t Irreducible mass --
|g 4.2.5.
|t Maximum energy extraction --
|g 4.2.6.
|t Naked singularities --
|g 4.3.
|t Scattering of waves --
|g 4.3.1.
|t Superradiance --
|g 4.4.
|t Thermodynamics --
|g 4.4.1.
|t Horizon temperature --
|g 4.4.2.
|t The four laws of black hole thermodynamics --
|g 4.5.
|t Hawking radiation --
|g 4.5.1.
|t Introduction --
|g 4.5.2.
|t Casimir effect --
|g 4.5.3.
|t Thermal vacua in accelerated frames --
|g 4.5.4.
|t Hawking radiation --
|g 4.6.
|t Properties of radiating black holes --
|g 4.6.1.
|t Entropy and temperature --
|g 4.6.2.
|t Radiating black holes --
|g 4.6.3.
|t Black hole in a box --
|g 4.7.
|t Entropy and microstates --
|g 5.
|t Astrophysical Black Holes --
|g 5.1.
|t Introduction --
|g 5.2.
|t Stellar mass black holes --
|g 5.2.1.
|t Formation --
|g 5.2.2.
|t Finding stellar mass black holes --
|g 5.2.3.
|t The black hole at the centre of the Galaxy --
|g 5.3.
|t Supermassive black holes in other galaxies --
|g 5.3.1.
|t Intermediate mass black holes --
|g 5.3.2.
|t Mini black holes --
|g 5.4.
|t Further evidence for black hole spin --
|g 5.5.
|t Conclusions.
|
650 |
|
0 |
|a Black holes (Astronomy)
|0 http://id.loc.gov/authorities/subjects/sh85014574
|
650 |
|
7 |
|a Black holes (Astronomy)
|2 fast
|0 http://id.worldcat.org/fast/fst00833708
|
700 |
1 |
|
|a Thomas, E. G.
|q (Edwin George),
|d 1937-
|0 http://id.loc.gov/authorities/names/no2001021272
|1 http://viaf.org/viaf/103256167
|
901 |
|
|
|a ToCBNA
|
903 |
|
|
|a HeVa
|
035 |
|
|
|a (OCoLC)63195380
|
929 |
|
|
|a cat
|
999 |
f |
f |
|i 8e99bf3a-0709-5f96-ad68-089bada3a2f2
|s 81c67129-f363-5a19-b42a-94ada80637ac
|
928 |
|
|
|t Library of Congress classification
|a QB843.B55 R35 2005
|l JCL
|c JCL-Sci
|i 5071322
|
927 |
|
|
|t Library of Congress classification
|a QB843.B55 R35 2005
|l JCL
|c JCL-Sci
|e SHAP
|e CRERAR
|b 75152240
|i 7990844
|