Morse theoretic methods in nonlinear analysis and in symplectic topolgy /

Saved in:
Bibliographic Details
Meeting name:NATO Advanced Study Institute on Morse Theoretic Methods in Nonlinear Analysis and Symplectic Topology (2004 : Montreal, Canada)
Imprint:Dordrecht ; [Great Britain] : Springer, 2006.
Description:xiv, 462 p. : ill. ; 25 cm.
Language:English
Series:NATO science series. Series II, Mathematics, physics, and chemistry 217
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/5897386
Hidden Bibliographic Details
Other authors / contributors:Biran, Paul.
Cornea, O. (Octavian), 1966-
Lalonde, François.
North Atlantic Treaty Organization. Public Diplomacy Division
ISBN:1402042728 (cased)
1402042736 (pbk.)
1402042663 (e-book)
Notes:Papers from the NATO Advanced Study Institute on Morse Theoretic Methods in Nonlinear Analysis and Symplectic Topology, Montreal, Canada, July 2004.
Includes bibliographic references.
Standard no.:9781402042720
9781402042737
9781402042669
Table of Contents:
  • Preface
  • Contributors
  • Lectures on the Morse Complex for Infinite-Dimensional Manifolds
  • 1. A few facts from hyperbolic dynamics
  • 1.1. Adapted norms
  • 1.2. Linear stable and unstable spaces of an asymptotically hyperbolic path
  • 1.3. Morse vector fields
  • 1.4. Local dynamics near a hyperbolic rest point
  • 1.5. Local stable and unstable manifolds
  • 1.6. The Grobman - Hartman linearization theorem
  • 1.7. Global stable and unstable manifolds
  • 2. The Morse complex in the case of finite Morse indices
  • 2.1. The Palais - Smale condition
  • 2.2. The Morse - Smale condition
  • 2.3. The assumptions
  • 2.4. Forward compactness
  • 2.5. Consequences of compactness and transversality
  • 2.6. Cellular filtrations
  • 2.7. The Morse complex
  • 2.8. Representation of delta in terms of intersection numbers
  • 2.9. How to remove the assumption (A8)
  • 2.10. Morse functions on Hilbert manifolds
  • 2.11. Basic results in transversality theory
  • 2.12. Genericity of the Morse - Smale condition
  • 2.13. Invariance of the Morse complex
  • 3. The Morse complex in the case of infinite Morse indices
  • 3.1. The program
  • 3.2. Fredholm pairs and compact perturbations of linear subspaces
  • 3.3. Finite-dimensional intersections
  • 3.4. Essential subbundles
  • 3.5. Orientations
  • 3.6. Compactness
  • 3.7. Two-dimensional intersections
  • 3.8. The Morse complex
  • Bibliographical note
  • Notes on Floer Homology and Loop Space Homology
  • 1. Introduction
  • 2. Main result
  • 2.1. Loop space homology
  • 2.2. Floer homology for the cotangent bundle
  • 3. Ring structures and ring-homomorphisms
  • 3.1. The pair-of-pants product
  • 3.2. The ring homomorphisms between free loop space Floer homology and based loop space Floer homology and classical homology
  • 4. Morse-homology on the loop spaces Lambda and Omega, and the isomorphism
  • 5. Products in Morse-homology
  • 5.1. Ring isomorphism between Morse homology and Floer homology.- Homotopical Dynamics in Symplectic Topology
  • 1. Introduction
  • 2. Elements of Morse theory
  • 2.1. Connecting manifolds
  • 2.2. Operations
  • 3. Applications to symplectic topology
  • 3.1. Bounded orbits
  • 3.2. Detection of pseudoholomorphic strips and Hofer's norm.- Morse Theory, Graphs, and String Topology
  • 1. Graphs, Morse theory, and cohomology operations
  • 2. String topology
  • 3. A Morse theoretic view of string topology
  • 4. Cylindrical holomorphic curves in the cotangent bundle.- Topology of Robot Motion Planning
  • 1. Introduction
  • 2. First examples of configuration spaces
  • 3. Varieties of polygonal linkages
  • 3.1. Short and long subsets
  • 3.2. PoincarF polynomial of M(a)
  • 4. Universality theorems for configuration spaces
  • 5. A remark about configuration spaces in robotics
  • 6. The motion planning problem
  • 7. Tame motion planning algorithms
  • 8. The Schwarz genus
  • 9. The second notion of topological complexity
  • 10. Homotopy invariance
  • 11. Order of instability of a motion planning algorithm
  • 12. Random motion planningalgorithms
  • 13. Equality theorem
  • 14. An upper bound for TC(X)
  • 15. A cohomological lower bound for TC(X)
  • 16. Examples
  • 17. Simultaneous control of many systems
  • 18. Another inequality relating TC(X) to the usual category
  • 19. Topological complexity of bouquets
  • 20. A general recipe to construct a motion planning algorithm
  • 21. How difficult is to avoid collisions in $ mathbb{{R}}$m?
  • 22. The case m = 2
  • 23. TC(F($ mathbb{{R}}$m; n) in the case m $ geq$ 3 odd
  • 24. Shade
  • 25. Illuminating the complement of the braid arrangement
  • 26. A quadratic motion planning algorithm in F($ mathbb{{R}}$m; n)
  • 27. Configuration spaces of graphs
  • 28. Motion planning in projective spaces
  • 29. Nonsingular maps
  • 30. TC(($ mathbb{{R}}$Pn) and the immersion problem
  • 31. Some open problems.- Application of Floer Homology of Langrangian Submanifolds to Symplectic Topology
  • 1. Introduction
  • 2. Lagrangian submanifold of $ mathbb{{C}}$n
  • 3. Perturbing Cauchy - Riemann equation
  • 4. Maslov index of Lagrangian submanifold with vanishing second Betti number
  • 5. Floer ho