Biological and pharmaceutical nanomaterials.

Saved in:
Bibliographic Details
Edition:1st ed.
Imprint:Weinheim : Wiley-VCH, c2006.
Description:xix, 408 p. ; 25 cm.
Language:English
Series:Nanotechnologies for the life sciences ; v. 2
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/5900656
Hidden Bibliographic Details
Other authors / contributors:Kumar, C. S. S. R. (Challa S. S. R.)
ISBN:3527313826
Table of Contents:
  • Preface
  • List of Contributors
  • I. DNA-based Nanomaterials
  • 1. Self-assembled DNA Nanotubes
  • 1.1. Introduction
  • 1.2. DNA Nanotubes Self-assembled from DX Tiles
  • 1.3. 3DAE-E DX Tile Nanotubes
  • 1.4. DAE-O DX Tile Nanotubes
  • 1.5. TX Tile Nanotubes
  • 1.6. 4 x 4 Tile Nanotubes
  • 1.7. 6HB Tile Nanotubes
  • 1.8. Applications
  • 1.9. Summary and Perspectives
  • References
  • 2. Nucleic Acid Nanoparticles
  • 2.1. Introduction
  • 2.2. The Chemical and Physical Properties of Therapeutic DNA
  • 2.3. Preparation of Nucleic Acid Nanoparticles: Synthesis and Characterization
  • 2.3.1. Rationale
  • 2.3.2. Synthesis, Characterization and Optimization of Surfactants
  • 2.3.3. Organization of the Surfactant-DNA Complexes
  • 2.3.4. Quantification of the Stability of Surfactant-DNA Complexes
  • 2.4. DNA Functionalization for Cell Recognition and Internalization
  • 2.4.1. Strategies for Functionalization
  • 2.4.2. Intercalation
  • 2.4.3. Triple Helix Formation with Oligodeoxyribonucleotides
  • 2.4.4. Peptide Nucleic Acids (PNAs)
  • 2.4.5. Interactions of DNA with Fusion Proteins
  • 2.4.6. Agents that Bind to the Minor Groove
  • 2.5. DNA Nanoparticles: Sophistication for Cell Recognition and Internalization
  • 2.5.1. Preparation of DNA Nanoparticles Enveloped with a Protective Coat and Cell Internalization Elements
  • 2.5.2. Biomedical Application: Cell Targeting and Internalization Properties of Folate-PEG-coated Nanoparticles
  • 2.6. Concluding Remarks
  • References
  • 3. Lipoplexes
  • 3.1. Introduction
  • 3.2. DNA Lipoplexes
  • 3.2.1. Composition
  • 3.2.2. Nanostructure and Microstructure
  • 3.2.2.1. Equilibrium Morphology
  • 3.2.2.2. Nonequilibrium Morphology
  • 3.2.2.3. Lipoplex Size
  • 3.2.3. Lipofection Efficiency
  • 3.2.3.1. In Vitro
  • 3.2.3.2. In Vivo
  • 3.3. ODN Lipoplexes
  • 3.4. siRNA Lipoplexes
  • Acknowledgments
  • References
  • 4. DNA-Chitosan Nanoparticles for Gene Therapy: Current Knowledge and Future Trends
  • 4.1. Introduction
  • 4.2. Chitosan as a Carrier for Gene Therapy
  • 4.2.1. Chitosan Chemistry
  • 4.2.2. General Strategies for Chitosan Modification
  • 4.2.3. Chitosan-DNA interactions: Transfection Efficacy of Unmodified Chitosan
  • 4.3. Modified Chitosans: Strategies to Improve the Transfection Efficacy
  • 4.3.1. The Effects of Charge Density/Solubility and Degree of Acetylation
  • 4.3.2. Improving the Physicochemical Characteristics of the Nanoparticulate Systems: Solubility, Aggregation and RES Uptake
  • 4.3.3. Targeting Mediated by Cell Surface Receptors
  • 4.3.4. Hydrophobic Modification: Protecting the DNA and Improving the Internalization Process
  • 4.4. Methods of Preparation of Chitosan Nanoparticles
  • 4.4.1. Complex Coacervation
  • 4.4.2. Crosslinking Methods
  • 4.4.2.1. Chemical Crosslinking
  • 4.4.2.2. Ionic Crosslinking or Ionic Gelation
  • 4.4.2.3. Emulsion Crosslinking
  • 4.4.2.4. Spray Drying
  • 4.4.2.5. Other Methods
  • 4.5. DNA Loading into Nano- and Microparticles of Chitosan
  • 4.6. DNA Release and Release Kinetics
  • 4.7. Preclinical Evidence of Chitosan-DNA Complex Efficacy
  • 4.8. Potential Clinical Applications of Chitosan-DNA in Gene Therapy
  • 4.9. Conclusion
  • Acknowledgments
  • References
  • II. Protein & Peptide-based Nanomaterials
  • 5. Plant Protein-based Nanoparticles
  • 5.1. Introduction
  • 5.2. Description of Plant Proteins
  • 5.2.1. Pea Seed Proteins
  • 5.2.2. Wheat Proteins
  • 5.3. Preparation of Protein Nanoparticles
  • 5.3.1. Preparation of Legumin and Vicilin Nanoparticles
  • 5.3.2. Preparation of Gliadin Nanoparticles
  • 5.4. Drug Encapsulation in Plant Protein Nanoparticles
  • 5.4.1. RA Encapsulation in Gliadin Nanoparticles
  • 5.4.2. VE Encapsulation in Gliadin Nanoparticles
  • 5.4.3. Lipophilic, Hydrophilic or Amphiphilic Drug Encapsulation
  • 5.5. Preparation of Ligand-Gliadin Nanoparticle Conjugates
  • 5.6. Bioadhesive Properties of Gliadin Nanoparticles
  • 5.6.1. Ex Vivo Studies with Gastrointestinal Mucosal Segments
  • 5.6.2. In Vivo Studies with Laboratory Animals
  • 5.7. Future Perspectives
  • 5.7.1. Size Optimization
  • 5.7.2. Immunization in Animals
  • 5.8. Conclusion
  • References
  • 6. Peptide Nanoparticles
  • 6.1. Introduction
  • 6.2. Starting Materials for the Preparation of Nanoparticles
  • 6.3. Preparation Methods
  • 6.3.1. Nanoparticle Preparation by Emulsion Techniques
  • 6.3.1.1. Emulsion Technique for the Preparation of Albumin-based Microspheres and Nanoparticles
  • 6.3.1.2. Emulsion Technique for the Preparation of Gelatin-based Microspheres and Nanoparticles
  • 6.3.1.3. Emulsion Technique for the Preparation of Casein-based Microspheres and Nanoparticles
  • 6.3.2. Nanoparticle Preparation by Coacervation
  • 6.3.2.1. Complex Coacervation Techniques for the Preparation of Nanoparticles
  • 6.3.2.2. Simple Coacervation (Desolvation) Techniques for the Preparation of Nanoparticles
  • 6.4. Basic Characterization Techniques for Peptide Nanoparticles
  • 6.5. Drug Targeting with Nanoparticles
  • 6.5.1. Passive Drug Targeting with Particle Systems
  • 6.5.2. Active Drug Targeting with Particle Systems
  • 6.5.3. Surface Modifications of Protein-based Nanoparticles
  • 6.5.4. Surface Modification by Different Hydrophilic Compounds
  • 6.5.5. Surface Modification by Polyethylene Glycol (PEG) Derivatives
  • 6.5.6. Surface Modification by Drug-targeting Ligands
  • 6.5.7. Different Surface Modification Strategies
  • 6.6. Applications as Drug Carriers and for Diagnostic Purposes
  • 6.6.1. Protein-based Nanoparticles in Gene Therapy
  • 6.6.2. Parenteral Application Route
  • 6.6.2.1. Preclinical Studies with Protein-based Particles
  • 6.6.2.2. Clinical Studies with Protein-based Particles
  • 6.6.3. Topical Application of Protein-based Particles
  • 6.6.4. Peroral Application of Protein-based Particles
  • 6.7. Immunological Reactions with Protein-based Microspheres
  • 6.8. Concluding Remarks
  • References
  • 7. Albumin Nanoparticles
  • 7.1. Introduction
  • 7.2. Serum Albumin
  • 7.3. Preparation of Albumin Nanoparticles
  • 7.3.1. "Conventional" Albumin Nanoparticles
  • 7.3.1.1. Preparation of Albumin Nanoparticles by Desolvation or Coacervation
  • 7.3.1.2. Preparation of Albumin Nanoparticles by Emulsification
  • 7.3.1.3. Other Techniques to Prepare Albumin Nanoparticles
  • 7.3.2. Surface-modified Albumin Nanoparticles
  • 7.3.3. Drug Encapsulation in Albumin Nanoparticles
  • 7.4. Biodistribution of Albumin Nanoparticles
  • 7.5. Pharmaceutical Applications
  • 7.5.1. Albumin Nanoparticles for Diagnostic Purposes
  • 7.5.1.1. Radiopharmaceuticals
  • 7.5.1.2. Echo-contrast Agents
  • 7.5.2. Albumin Nanoparticles as Carriers for Oligonucleotides and DNA
  • 7.5.3. Albumin Nanoparticles in the Treatment of Cancer
  • 7.5.3.1. Fluorouracil and Methotrexate Delivery
  • 7.5.3.2. Paclitaxel Delivery
  • 7.5.3.3. Albumin Nanoparticles in Suicide Gene Therapy
  • 7.5.4. Magnetic Albumin Nanoparticles
  • 7.5.5. Albumin Nanoparticles for Ocular Drug Delivery
  • 7.5.5.1. Topical Drug Delivery
  • 7.5.5.2. Intravitreal Drug Delivery
  • 7.6. Concluding Remarks
  • References
  • 8. Nanoscale Patterning of S-Layer Proteins as a Natural Self-assembly System
  • 8.1. Introduction
  • 8.2. General Properties of S-Layers
  • 8.2.1. Structure, Isolation, Self-Assembly and Recrystallization
  • 8.2.2. Chemistry and Molecular Biology
  • 8.2.3. S-Layers as Carbohydrate-binding Proteins
  • 8.3. Nanoscale Patterning of S-Layer Proteins
  • 8.3.1. Properties of S-Layer Proteins Relevant for Nanoscale Patterning
  • 8.3.2. Immobilization of Functionalities by Chemical Methods
  • 8.3.3. Patterning by Genetic Approaches
  • 8.3.3.1. The S-Layer Proteins SbsA, SbsB and SbsC
  • 8.3.3.2. S-Layer Fusion Proteins
  • 8.4. Spatial Control over S-Layer Reassembly
  • 8.5. S-Layers as Templates for the Formation of Regularly Arranged Nanoparticles
  • 8.5.1. Binding of Molecules and Nanoparticles to Functional Domains
  • 8.5.2. In Situ Synthesis of Nanoparticles on S-Layers
  • 8.6. Conclusions and Outlook
  • Acknowledgments
  • References
  • III. Pharmaceutically Important Nanomaterials
  • 9. Methods of Preparation of Drug Nanoparticles
  • 9.1. Introduction
  • 9.2. Structures of Drug Nanoparticles
  • 9.3. Thermodynamic Approaches
  • 9.3.1. Lipid-based Pharmaceutical Nanoparticles
  • 9.3.2. What is a Lipid?
  • 9.3.3. Liquid Crystalline Phases of Hydrated Lipids with Planar and Curved Interfaces
  • 9.3.4. Oil-in-water-type Lipid Emulsion
  • 9.3.5. Liposomes
  • 9.3.6. Cubosomes and Hexosomes
  • 9.3.7. Other Lipid-based Pharmaceutical Nanoparticles
  • 9.4. Mechanical Approaches
  • 9.4.1. Types of Processing
  • 9.4.2. Characteristics of Wet Comminution
  • 9.4.3. Drying of Liquid Nanodispersions
  • 9.5. SCF Approaches
  • 9.5.1. SCF Characteristics
  • 9.5.2. Classification of SCF Particle Formation Processes
  • 9.5.3. RESS
  • 9.5.4. SAS
  • 9.5.5. SEDS
  • 9.6. Electrostatic Approaches
  • 9.6.1. Electrical Potential and Interfaces
  • 9.6.2. Electrospraying
  • References
  • 10. Production of Biofunctionalized Solid Lipid Nanoparticles for Site-specific Drug Delivery
  • 10.1. Introduction
  • 10.2. Concept of Differential Adsorption
  • 10.3. Production of SLN
  • 10.4. Functionalization by Surface Modification
  • 10.5. Conclusions
  • References
  • 11. Biocompatible Nanoparticulate Systems for Tumor Diagnosis and Therapy
  • 11.1. Introduction
  • 11.2. Nanoscale Particulate Systems and their Building Blocks/Components
  • 11.2.1. Dendrimers
  • 11.2.2. Buckyballs and Buckytubes
  • 11.2.3. Quantum Dots
  • 11.2.4. Polymeric Micelles
  • 11.2.5. Liposomes
  • 11.3. Biodegradable Nanoparticles
  • 11.3.1. Preparation of Nanoparticles
  • 11.4. Biodegradable Optical Nanoparticles
  • 11.4.1. Optical Nanoparticles as a Potential Technology for Tumor Diagnosis
  • 11.4.2. Optical Nanoparticles as a Potential Technology for Tumor Treatment
  • 11.5. Optical Imaging and PDT
  • 11.5.1. Optical Imaging
  • 11.5.1.1. Fluorescence-based Optical Imaging
  • 11.5.1.2. NIR Fluorescence Imaging
  • 11.5.1.3. NIR Dyes for Fluorescence Imaging
  • 11.5.2. PDT
  • 11.5.2.1. Basis of PDT
  • 11.5.2.2. Photosensitizers for PDT
  • 11.5.3. ICG: An Ideal Photoactive Agent for Tumor Diagnosis and Treatment
  • 11.5.3.1. Clinical Uses of ICG
  • 11.5.3.2. Structure and Physicochemical Properties of ICG
  • 11.5.3.3. Binding Properties of ICG
  • 11.5.3.4. Metabolism, Excretion and Pharmacokinetics of ICG
  • 11.5.3.5. Toxicity of ICG
  • 11.5.3.6. Tumor Imaging with ICG
  • 11.5.3.7. PDT with ICG
  • 11.5.3.8. Limitations of ICG for Tumor Diagnosis and Treatment
  • 11.5.3.9. Recent Approaches for Improving the Blood Circulation Time and Uptake of ICG by Tumors
  • 11.5.3.10. Recent Approaches for ICG Stabilization In Vitro
  • 11.6. PLGA-based Nanoparticulate Delivery System for ICG
  • 11.6.1. Rationale of Using a PLGA-based Nanoparticulate Delivery System for ICG
  • 11.6.2. In Vivo Pharmacokinetics of ICG Solutions and Nanoparticles
  • 11.7. Conclusions and Future Work
  • References
  • 12. Nanoparticles for Crossing Biological Membranes
  • 12.1. Introduction
  • 12.2. Cell Membranes
  • 12.2.1. Functions of Biological Membranes
  • 12.2.2. Kinetic and Thermodynamic Aspects of Biological Membranes
  • 12.3. Problems of Drugs Crossing through Biological Membranes
  • 12.3.1. Through the Skin
  • 12.3.1.1. Mechanical Irritation of Skin
  • 12.3.1.2. Low-voltage Electroporation of the Skin
  • 12.3.2. Through the BBB
  • 12.3.2.1. Small Drugs
  • 12.3.2.1.1. Limitations of Small Drugs
  • 12.3.2.2. Peptide Drug Delivery via SynB Vectors
  • 12.3.3. GI Barrier
  • 12.3.3.1. Intestinal Translocation and Disease
  • 12.4. Nanoparticulate Drug Delivery
  • 2.4.1. Skin
  • 12.4.1.1. Skin as Semipermeable Nanoporous Barrier
  • 12.4.1.2. Hydrophilic Pathway through the Skin Barrier
  • 12.4.2. Solid-Lipid Nanoparticles (SLN) Skin Delivery
  • 12.4.2.1. Chemical Stability of SLN
  • 12.4.2.2. In Vitro Occlusion of SLN
  • 12.4.2.3. In Vivo SLN: Occlusion, Elasticity and Wrinkles
  • 12.4.2.4. Active Compound Penetration into the Skin
  • 12.4.2.5. Controlled Release of Cosmetic Compounds
  • 12.4.2.6. Novel UV Sunscreen System Using SLN
  • 12.4.3. Polymer-based Nanoparticulate Delivery to the Skin
  • 12.4.4. Subcutaneous Nanoparticulate Antiepileptic Drug Delivery
  • 12.4.5. Nanoparticulate Anticancer Drug Delivery
  • 12.4.5.1. Paclitaxel
  • 12.4.5.2. Doxorubicin
  • 12.4.5.3. 5-Fluorouracil (5-FU)
  • 12.4.5.4. Antineoplastic Agents
  • 12.4.5.5. Gene Delivery
  • 12.4.5.6. Breast Cancer
  • 12.4.6. Nanofibers Composed of Nonbiodegradable Polymer
  • 12.4.6.1. Electrostatic Spinning
  • 12.4.6.2. Scanning Electron Microscopy
  • 12.4.6.3. Differential Scanning Calorimetry (DSC)
  • 12.5. Nanoparticulate Delivery to the BBB
  • 12.5.1. Peptide Delivery to the BBB
  • 12.5.1.1. Peptide Conjugation through a Disulfide Bond
  • 12.5.2. Biodegradable Polymer Based Nanoparticulate Delivery to BBB
  • 12.5.3. Nanoparticulate Gene Delivery to the BBB
  • 12.5.4. Mechanism of Nanoparticulate Drug Delivery to the BBB
  • 12.5.5. Nanoparticulate Thiamine-coated Delivery to the BBB
  • 12.5.6. Nanoparticle Optics and Living Cell Imaging
  • 12.6. Oral Nanoparticulate Delivery
  • 12.6.1. Lectin-conjugated Nanoparticulate Oral Delivery
  • 12.6.2. Oral Peptide Nanoparticulate-based Delivery
  • 12.6.3. Polymer-Based Oral Peptide Nanoparticulate Delivery
  • 12.6.3.1. Polyacrylamide Nanospheres
  • 12.6.3.2. Poly(alkyl cyanoacrylate) PACA Nanocapsules
  • 12.6.3.3. Derivatized Amino Acid Microspheres
  • 12.6.4. Lymphatic Oral Nanoparticulate Delivery
  • 12.6.5. Oral Nanosuspension Delivery
  • 12.6.6. Mucoadhesion of Nanoparticles after Oral Administration
  • 12.6.7. Protein Nanoparticulate Oral Delivery
  • References
  • Index