Biological and pharmaceutical nanomaterials.
Saved in:
Edition: | 1st ed. |
---|---|
Imprint: | Weinheim : Wiley-VCH, c2006. |
Description: | xix, 408 p. ; 25 cm. |
Language: | English |
Series: | Nanotechnologies for the life sciences ; v. 2 |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/5900656 |
Table of Contents:
- Preface
- List of Contributors
- I. DNA-based Nanomaterials
- 1. Self-assembled DNA Nanotubes
- 1.1. Introduction
- 1.2. DNA Nanotubes Self-assembled from DX Tiles
- 1.3. 3DAE-E DX Tile Nanotubes
- 1.4. DAE-O DX Tile Nanotubes
- 1.5. TX Tile Nanotubes
- 1.6. 4 x 4 Tile Nanotubes
- 1.7. 6HB Tile Nanotubes
- 1.8. Applications
- 1.9. Summary and Perspectives
- References
- 2. Nucleic Acid Nanoparticles
- 2.1. Introduction
- 2.2. The Chemical and Physical Properties of Therapeutic DNA
- 2.3. Preparation of Nucleic Acid Nanoparticles: Synthesis and Characterization
- 2.3.1. Rationale
- 2.3.2. Synthesis, Characterization and Optimization of Surfactants
- 2.3.3. Organization of the Surfactant-DNA Complexes
- 2.3.4. Quantification of the Stability of Surfactant-DNA Complexes
- 2.4. DNA Functionalization for Cell Recognition and Internalization
- 2.4.1. Strategies for Functionalization
- 2.4.2. Intercalation
- 2.4.3. Triple Helix Formation with Oligodeoxyribonucleotides
- 2.4.4. Peptide Nucleic Acids (PNAs)
- 2.4.5. Interactions of DNA with Fusion Proteins
- 2.4.6. Agents that Bind to the Minor Groove
- 2.5. DNA Nanoparticles: Sophistication for Cell Recognition and Internalization
- 2.5.1. Preparation of DNA Nanoparticles Enveloped with a Protective Coat and Cell Internalization Elements
- 2.5.2. Biomedical Application: Cell Targeting and Internalization Properties of Folate-PEG-coated Nanoparticles
- 2.6. Concluding Remarks
- References
- 3. Lipoplexes
- 3.1. Introduction
- 3.2. DNA Lipoplexes
- 3.2.1. Composition
- 3.2.2. Nanostructure and Microstructure
- 3.2.2.1. Equilibrium Morphology
- 3.2.2.2. Nonequilibrium Morphology
- 3.2.2.3. Lipoplex Size
- 3.2.3. Lipofection Efficiency
- 3.2.3.1. In Vitro
- 3.2.3.2. In Vivo
- 3.3. ODN Lipoplexes
- 3.4. siRNA Lipoplexes
- Acknowledgments
- References
- 4. DNA-Chitosan Nanoparticles for Gene Therapy: Current Knowledge and Future Trends
- 4.1. Introduction
- 4.2. Chitosan as a Carrier for Gene Therapy
- 4.2.1. Chitosan Chemistry
- 4.2.2. General Strategies for Chitosan Modification
- 4.2.3. Chitosan-DNA interactions: Transfection Efficacy of Unmodified Chitosan
- 4.3. Modified Chitosans: Strategies to Improve the Transfection Efficacy
- 4.3.1. The Effects of Charge Density/Solubility and Degree of Acetylation
- 4.3.2. Improving the Physicochemical Characteristics of the Nanoparticulate Systems: Solubility, Aggregation and RES Uptake
- 4.3.3. Targeting Mediated by Cell Surface Receptors
- 4.3.4. Hydrophobic Modification: Protecting the DNA and Improving the Internalization Process
- 4.4. Methods of Preparation of Chitosan Nanoparticles
- 4.4.1. Complex Coacervation
- 4.4.2. Crosslinking Methods
- 4.4.2.1. Chemical Crosslinking
- 4.4.2.2. Ionic Crosslinking or Ionic Gelation
- 4.4.2.3. Emulsion Crosslinking
- 4.4.2.4. Spray Drying
- 4.4.2.5. Other Methods
- 4.5. DNA Loading into Nano- and Microparticles of Chitosan
- 4.6. DNA Release and Release Kinetics
- 4.7. Preclinical Evidence of Chitosan-DNA Complex Efficacy
- 4.8. Potential Clinical Applications of Chitosan-DNA in Gene Therapy
- 4.9. Conclusion
- Acknowledgments
- References
- II. Protein & Peptide-based Nanomaterials
- 5. Plant Protein-based Nanoparticles
- 5.1. Introduction
- 5.2. Description of Plant Proteins
- 5.2.1. Pea Seed Proteins
- 5.2.2. Wheat Proteins
- 5.3. Preparation of Protein Nanoparticles
- 5.3.1. Preparation of Legumin and Vicilin Nanoparticles
- 5.3.2. Preparation of Gliadin Nanoparticles
- 5.4. Drug Encapsulation in Plant Protein Nanoparticles
- 5.4.1. RA Encapsulation in Gliadin Nanoparticles
- 5.4.2. VE Encapsulation in Gliadin Nanoparticles
- 5.4.3. Lipophilic, Hydrophilic or Amphiphilic Drug Encapsulation
- 5.5. Preparation of Ligand-Gliadin Nanoparticle Conjugates
- 5.6. Bioadhesive Properties of Gliadin Nanoparticles
- 5.6.1. Ex Vivo Studies with Gastrointestinal Mucosal Segments
- 5.6.2. In Vivo Studies with Laboratory Animals
- 5.7. Future Perspectives
- 5.7.1. Size Optimization
- 5.7.2. Immunization in Animals
- 5.8. Conclusion
- References
- 6. Peptide Nanoparticles
- 6.1. Introduction
- 6.2. Starting Materials for the Preparation of Nanoparticles
- 6.3. Preparation Methods
- 6.3.1. Nanoparticle Preparation by Emulsion Techniques
- 6.3.1.1. Emulsion Technique for the Preparation of Albumin-based Microspheres and Nanoparticles
- 6.3.1.2. Emulsion Technique for the Preparation of Gelatin-based Microspheres and Nanoparticles
- 6.3.1.3. Emulsion Technique for the Preparation of Casein-based Microspheres and Nanoparticles
- 6.3.2. Nanoparticle Preparation by Coacervation
- 6.3.2.1. Complex Coacervation Techniques for the Preparation of Nanoparticles
- 6.3.2.2. Simple Coacervation (Desolvation) Techniques for the Preparation of Nanoparticles
- 6.4. Basic Characterization Techniques for Peptide Nanoparticles
- 6.5. Drug Targeting with Nanoparticles
- 6.5.1. Passive Drug Targeting with Particle Systems
- 6.5.2. Active Drug Targeting with Particle Systems
- 6.5.3. Surface Modifications of Protein-based Nanoparticles
- 6.5.4. Surface Modification by Different Hydrophilic Compounds
- 6.5.5. Surface Modification by Polyethylene Glycol (PEG) Derivatives
- 6.5.6. Surface Modification by Drug-targeting Ligands
- 6.5.7. Different Surface Modification Strategies
- 6.6. Applications as Drug Carriers and for Diagnostic Purposes
- 6.6.1. Protein-based Nanoparticles in Gene Therapy
- 6.6.2. Parenteral Application Route
- 6.6.2.1. Preclinical Studies with Protein-based Particles
- 6.6.2.2. Clinical Studies with Protein-based Particles
- 6.6.3. Topical Application of Protein-based Particles
- 6.6.4. Peroral Application of Protein-based Particles
- 6.7. Immunological Reactions with Protein-based Microspheres
- 6.8. Concluding Remarks
- References
- 7. Albumin Nanoparticles
- 7.1. Introduction
- 7.2. Serum Albumin
- 7.3. Preparation of Albumin Nanoparticles
- 7.3.1. "Conventional" Albumin Nanoparticles
- 7.3.1.1. Preparation of Albumin Nanoparticles by Desolvation or Coacervation
- 7.3.1.2. Preparation of Albumin Nanoparticles by Emulsification
- 7.3.1.3. Other Techniques to Prepare Albumin Nanoparticles
- 7.3.2. Surface-modified Albumin Nanoparticles
- 7.3.3. Drug Encapsulation in Albumin Nanoparticles
- 7.4. Biodistribution of Albumin Nanoparticles
- 7.5. Pharmaceutical Applications
- 7.5.1. Albumin Nanoparticles for Diagnostic Purposes
- 7.5.1.1. Radiopharmaceuticals
- 7.5.1.2. Echo-contrast Agents
- 7.5.2. Albumin Nanoparticles as Carriers for Oligonucleotides and DNA
- 7.5.3. Albumin Nanoparticles in the Treatment of Cancer
- 7.5.3.1. Fluorouracil and Methotrexate Delivery
- 7.5.3.2. Paclitaxel Delivery
- 7.5.3.3. Albumin Nanoparticles in Suicide Gene Therapy
- 7.5.4. Magnetic Albumin Nanoparticles
- 7.5.5. Albumin Nanoparticles for Ocular Drug Delivery
- 7.5.5.1. Topical Drug Delivery
- 7.5.5.2. Intravitreal Drug Delivery
- 7.6. Concluding Remarks
- References
- 8. Nanoscale Patterning of S-Layer Proteins as a Natural Self-assembly System
- 8.1. Introduction
- 8.2. General Properties of S-Layers
- 8.2.1. Structure, Isolation, Self-Assembly and Recrystallization
- 8.2.2. Chemistry and Molecular Biology
- 8.2.3. S-Layers as Carbohydrate-binding Proteins
- 8.3. Nanoscale Patterning of S-Layer Proteins
- 8.3.1. Properties of S-Layer Proteins Relevant for Nanoscale Patterning
- 8.3.2. Immobilization of Functionalities by Chemical Methods
- 8.3.3. Patterning by Genetic Approaches
- 8.3.3.1. The S-Layer Proteins SbsA, SbsB and SbsC
- 8.3.3.2. S-Layer Fusion Proteins
- 8.4. Spatial Control over S-Layer Reassembly
- 8.5. S-Layers as Templates for the Formation of Regularly Arranged Nanoparticles
- 8.5.1. Binding of Molecules and Nanoparticles to Functional Domains
- 8.5.2. In Situ Synthesis of Nanoparticles on S-Layers
- 8.6. Conclusions and Outlook
- Acknowledgments
- References
- III. Pharmaceutically Important Nanomaterials
- 9. Methods of Preparation of Drug Nanoparticles
- 9.1. Introduction
- 9.2. Structures of Drug Nanoparticles
- 9.3. Thermodynamic Approaches
- 9.3.1. Lipid-based Pharmaceutical Nanoparticles
- 9.3.2. What is a Lipid?
- 9.3.3. Liquid Crystalline Phases of Hydrated Lipids with Planar and Curved Interfaces
- 9.3.4. Oil-in-water-type Lipid Emulsion
- 9.3.5. Liposomes
- 9.3.6. Cubosomes and Hexosomes
- 9.3.7. Other Lipid-based Pharmaceutical Nanoparticles
- 9.4. Mechanical Approaches
- 9.4.1. Types of Processing
- 9.4.2. Characteristics of Wet Comminution
- 9.4.3. Drying of Liquid Nanodispersions
- 9.5. SCF Approaches
- 9.5.1. SCF Characteristics
- 9.5.2. Classification of SCF Particle Formation Processes
- 9.5.3. RESS
- 9.5.4. SAS
- 9.5.5. SEDS
- 9.6. Electrostatic Approaches
- 9.6.1. Electrical Potential and Interfaces
- 9.6.2. Electrospraying
- References
- 10. Production of Biofunctionalized Solid Lipid Nanoparticles for Site-specific Drug Delivery
- 10.1. Introduction
- 10.2. Concept of Differential Adsorption
- 10.3. Production of SLN
- 10.4. Functionalization by Surface Modification
- 10.5. Conclusions
- References
- 11. Biocompatible Nanoparticulate Systems for Tumor Diagnosis and Therapy
- 11.1. Introduction
- 11.2. Nanoscale Particulate Systems and their Building Blocks/Components
- 11.2.1. Dendrimers
- 11.2.2. Buckyballs and Buckytubes
- 11.2.3. Quantum Dots
- 11.2.4. Polymeric Micelles
- 11.2.5. Liposomes
- 11.3. Biodegradable Nanoparticles
- 11.3.1. Preparation of Nanoparticles
- 11.4. Biodegradable Optical Nanoparticles
- 11.4.1. Optical Nanoparticles as a Potential Technology for Tumor Diagnosis
- 11.4.2. Optical Nanoparticles as a Potential Technology for Tumor Treatment
- 11.5. Optical Imaging and PDT
- 11.5.1. Optical Imaging
- 11.5.1.1. Fluorescence-based Optical Imaging
- 11.5.1.2. NIR Fluorescence Imaging
- 11.5.1.3. NIR Dyes for Fluorescence Imaging
- 11.5.2. PDT
- 11.5.2.1. Basis of PDT
- 11.5.2.2. Photosensitizers for PDT
- 11.5.3. ICG: An Ideal Photoactive Agent for Tumor Diagnosis and Treatment
- 11.5.3.1. Clinical Uses of ICG
- 11.5.3.2. Structure and Physicochemical Properties of ICG
- 11.5.3.3. Binding Properties of ICG
- 11.5.3.4. Metabolism, Excretion and Pharmacokinetics of ICG
- 11.5.3.5. Toxicity of ICG
- 11.5.3.6. Tumor Imaging with ICG
- 11.5.3.7. PDT with ICG
- 11.5.3.8. Limitations of ICG for Tumor Diagnosis and Treatment
- 11.5.3.9. Recent Approaches for Improving the Blood Circulation Time and Uptake of ICG by Tumors
- 11.5.3.10. Recent Approaches for ICG Stabilization In Vitro
- 11.6. PLGA-based Nanoparticulate Delivery System for ICG
- 11.6.1. Rationale of Using a PLGA-based Nanoparticulate Delivery System for ICG
- 11.6.2. In Vivo Pharmacokinetics of ICG Solutions and Nanoparticles
- 11.7. Conclusions and Future Work
- References
- 12. Nanoparticles for Crossing Biological Membranes
- 12.1. Introduction
- 12.2. Cell Membranes
- 12.2.1. Functions of Biological Membranes
- 12.2.2. Kinetic and Thermodynamic Aspects of Biological Membranes
- 12.3. Problems of Drugs Crossing through Biological Membranes
- 12.3.1. Through the Skin
- 12.3.1.1. Mechanical Irritation of Skin
- 12.3.1.2. Low-voltage Electroporation of the Skin
- 12.3.2. Through the BBB
- 12.3.2.1. Small Drugs
- 12.3.2.1.1. Limitations of Small Drugs
- 12.3.2.2. Peptide Drug Delivery via SynB Vectors
- 12.3.3. GI Barrier
- 12.3.3.1. Intestinal Translocation and Disease
- 12.4. Nanoparticulate Drug Delivery
- 2.4.1. Skin
- 12.4.1.1. Skin as Semipermeable Nanoporous Barrier
- 12.4.1.2. Hydrophilic Pathway through the Skin Barrier
- 12.4.2. Solid-Lipid Nanoparticles (SLN) Skin Delivery
- 12.4.2.1. Chemical Stability of SLN
- 12.4.2.2. In Vitro Occlusion of SLN
- 12.4.2.3. In Vivo SLN: Occlusion, Elasticity and Wrinkles
- 12.4.2.4. Active Compound Penetration into the Skin
- 12.4.2.5. Controlled Release of Cosmetic Compounds
- 12.4.2.6. Novel UV Sunscreen System Using SLN
- 12.4.3. Polymer-based Nanoparticulate Delivery to the Skin
- 12.4.4. Subcutaneous Nanoparticulate Antiepileptic Drug Delivery
- 12.4.5. Nanoparticulate Anticancer Drug Delivery
- 12.4.5.1. Paclitaxel
- 12.4.5.2. Doxorubicin
- 12.4.5.3. 5-Fluorouracil (5-FU)
- 12.4.5.4. Antineoplastic Agents
- 12.4.5.5. Gene Delivery
- 12.4.5.6. Breast Cancer
- 12.4.6. Nanofibers Composed of Nonbiodegradable Polymer
- 12.4.6.1. Electrostatic Spinning
- 12.4.6.2. Scanning Electron Microscopy
- 12.4.6.3. Differential Scanning Calorimetry (DSC)
- 12.5. Nanoparticulate Delivery to the BBB
- 12.5.1. Peptide Delivery to the BBB
- 12.5.1.1. Peptide Conjugation through a Disulfide Bond
- 12.5.2. Biodegradable Polymer Based Nanoparticulate Delivery to BBB
- 12.5.3. Nanoparticulate Gene Delivery to the BBB
- 12.5.4. Mechanism of Nanoparticulate Drug Delivery to the BBB
- 12.5.5. Nanoparticulate Thiamine-coated Delivery to the BBB
- 12.5.6. Nanoparticle Optics and Living Cell Imaging
- 12.6. Oral Nanoparticulate Delivery
- 12.6.1. Lectin-conjugated Nanoparticulate Oral Delivery
- 12.6.2. Oral Peptide Nanoparticulate-based Delivery
- 12.6.3. Polymer-Based Oral Peptide Nanoparticulate Delivery
- 12.6.3.1. Polyacrylamide Nanospheres
- 12.6.3.2. Poly(alkyl cyanoacrylate) PACA Nanocapsules
- 12.6.3.3. Derivatized Amino Acid Microspheres
- 12.6.4. Lymphatic Oral Nanoparticulate Delivery
- 12.6.5. Oral Nanosuspension Delivery
- 12.6.6. Mucoadhesion of Nanoparticles after Oral Administration
- 12.6.7. Protein Nanoparticulate Oral Delivery
- References
- Index