Computational fluid dynamics : principles and applications /

Saved in:
Bibliographic Details
Author / Creator:Blazek, J.
Edition:2nd ed.
Imprint:Amsterdam ; Boston : Elsevier, 2005.
Description:xx, 470 p. ; 25 cm. + 1 CD-ROM (4 3/4 in.)
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/5921308
Hidden Bibliographic Details
ISBN:0080445063
0080448577 (CD-ROM)
Table of Contents:
  • Acknowledgements
  • List of Symbols
  • Abbreviations
  • 1. Introduction
  • 2. Governing Equations
  • 2.1. The Flow and its Mathematical Description
  • 2.2. Conservation Laws
  • 2.2.1. The Continuity Equation
  • 2.2.2. The Momentum Equation
  • 2.2.3. The Energy Equation
  • 2.3. Viscous Stresses
  • 2.4. Complete System of the Navier-Stokes Equations
  • 2.4.1. Formulation for a Perfect Gas
  • 2.4.2. Formulation for a Real Gas
  • 2.4.3. Simplifications to the Navier-Stokes Equations
  • Bibliography
  • 3. Principles of Solution of the Governing Equations
  • 3.1. Spatial Discretisation
  • 3.1.1. Finite Difference Method
  • 3.1.2. Finite Volume Method
  • 3.1.3. Finite Element Method
  • 3.1.4. Other Discretisation Methods
  • 3.1.5. Central and Upwind Schemes
  • 3.2. Temporal Discretisation
  • 3.2.1. Explicit Schemes
  • 3.2.2. Implicit Schemes
  • 3.3. Turbulence Modelling
  • 3.4. Initial and Boundary Conditions
  • Bibliography
  • 4. Structured Finite Volume Schemes
  • 4.1. Geometrical Quantities of a Control Volume
  • 4.1.1. Two-Dimensional Case
  • 4.1.2. Three-Dimensional Case
  • 4.2. General Discretisation Methodologies
  • 4.2.1. Cell-Centred Scheme
  • 4.2.2. Cell-Vertex Scheme: Overlapping Control Volumes
  • 4.2.3. Cell-Vertex Scheme: Dual Control Volumes
  • 4.2.4. Cell-Centred versus Cell-Vertex Schemes
  • 4.3. Discretisation of the Convective Fluxes
  • 4.3.1. Central Scheme with Artificial Dissipation
  • 4.3.2. Flux-Vector Splitting Schemes
  • 4.3.3. Flux-Difference Splitting Schemes
  • 4.3.4. Total Variation Diminishing Schemes
  • 4.3.5. Limiter Functions
  • 4.4. Discretisation of the Viscous Fluxes
  • 4.4.1. Cell-Centred Scheme
  • 4.4.2. Cell-Vertex Scheme
  • Bibliography
  • 5. Unstructured Finite Volume Schemes
  • 5.1. Geometrical Quantities of a Control Volume
  • 5.1.1. Two-Dimensional Case
  • 5.1.2. Three-Dimensional Case
  • 5.2. General Discretisation Methodologies
  • 5.2.1. Cell-Centred Scheme
  • 5.2.2. Median-Dual Cell-Vertex Scheme
  • 5.2.3. Cell-Centred versus Median-Dual Scheme
  • 5.3. Discretisation of the Convective Fluxes
  • 5.3.1. Central Schemes with Artificial Dissipation
  • 5.3.2. Upwind Schemes
  • 5.3.3. Solution Reconstruction
  • 5.3.4. Evaluation of the Gradients
  • 5.3.5. Limiter Functions
  • 5.4. Discretisation of the Viscous Fluxes
  • 5.4.1. Element-Based Gradients
  • 5.4.2. Average of Gradients
  • Bibliography
  • 6. Temporal Discretisation
  • 6.1. Explicit Time-Stepping Schemes
  • 6.1.1. Multistage Schemes (Runge-Kutta)
  • 6.1.2. Hybrid Multistage Schemes
  • 6.1.3. Treatment of the Source Term
  • 6.1.4. Determination of the Maximum Time Step
  • 6.2. Implicit Time-Stepping Schemes
  • 6.2.1. Matrix Form of the Implicit Operator
  • 6.2.2. Evaluation of the Flux Jacobian
  • 6.2.3. ADI Scheme
  • 6.2.4. LU-SGS Scheme
  • 6.2.5. Newton-Krylov Method
  • 6.3. Methodologies for Unsteady Flows
  • 6.3.1. Dual Time-Stepping for Explicit Multistage Schemes
  • 6.3.2. Dual Time-Stepping for Implicit Schemes
  • Bibliography
  • 7. Turbulence Modelling
  • 7.1. Basic Equations of Turbulence
  • 7.1.1. Reynolds Averaging
  • 7.1.2. Favre (Mass) Averaging
  • 7.1.3. Reynolds-Averaged Navier-Stokes Equations
  • 7.1.4. Favre- and Reynolds-Averaged Navier-Stokes Equations
  • 7.1.5. Eddy-Viscosity Hypothesis
  • 7.1.6. Non-Linear Eddy Viscosity
  • 7.1.7. Reynolds-Stress Transport Equation
  • 7.2. First-Order Closures
  • 7.2.1. Spalart-Allmaras One-Equation Model
  • 7.2.2. K-[epsilon] Two-Equation Model
  • 7.2.3. SST Two-Equation Model of Menter
  • 7.3. Large-Eddy Simulation
  • 7.3.1. Spatial Filtering
  • 7.3.2. Filtered Governing Equations
  • 7.3.3. Subgrid-Scale Modelling
  • 7.3.4. Wall Models
  • 7.3.5. Detached Eddy Simulation
  • Bibliography
  • 8. Boundary Conditions
  • 8.1. Concept of Dummy Cells
  • 8.2. Solid Wall
  • 8.2.1. Inviscid Flow
  • 8.2.2. Viscous Flow
  • 8.3. Farfield
  • 8.3.1. Concept of Characteristic Variables
  • 8.3.2. Modifications for Lifting Bodies
  • 8.4. Inlet/Outlet Boundary
  • 8.5. Injection Boundary
  • 8.6. Symmetry Plane
  • 8.7. Coordinate Cut
  • 8.8. Periodic Boundaries
  • 8.9. Interface Between Grid Blocks
  • 8.10. Flow Gradients at Boundaries of Unstructured Grids
  • Bibliography
  • 9. Acceleration Techniques
  • 9.1. Local Time-Stepping
  • 9.2. Enthalpy Damping
  • 9.3. Residual Smoothing
  • 9.3.1. Central IRS on Structured Grids
  • 9.3.2. Central IRS on Unstructured Grids
  • 9.3.3. Upwind IRS on Structured Grids
  • 9.4. Multigrid
  • 9.4.1. Basic Multigrid Cycle
  • 9.4.2. Multigrid Strategies
  • 9.4.3. Implementation on Structured Grids
  • 9.4.4. Implementation on Unstructured Grids
  • 9.5. Preconditioning for Low Mach Numbers
  • 9.5.1. Derivation of Preconditioned Equations
  • 9.5.2. Implementation
  • 9.5.3. Form of the Matrices
  • Bibliography
  • 10. Consistency, Accuracy and Stability
  • 10.1. Consistency Requirements
  • 10.2. Accuracy of Discretisation
  • 10.3. Von Neumann Stability Analysis
  • 10.3.1. Fourier Symbol and Amplification Factor
  • 10.3.2. Convection Model Equation
  • 10.3.3. Convection-Diffusion Model Equation
  • 10.3.4. Explicit Time-Stepping
  • 10.3.5. Implicit Time-Stepping
  • 10.3.6. Derivation of the CFL Condition
  • Bibliography
  • 11. Principles of Grid Generation
  • 11.1. Structured Grids
  • 11.1.1. C-, H-, and O-Grid Topology
  • 11.1.2. Algebraic Grid Generation
  • 11.1.3. Elliptic Grid Generation
  • 11.1.4. Hyperbolic Grid Generation
  • 11.2. Unstructured Grids
  • 11.2.1. Delaunay Triangulation
  • 11.2.2. Advancing-Front Method
  • 11.2.3. Generation of Anisotropic Grids
  • 11.2.4. Mixed-Element/Hybrid Grids
  • 11.2.5. Assessment and Improvement of Grid Quality
  • Bibliography
  • 12. Description of the Source Codes
  • 12.1. Programs for Stability Analysis
  • 12.2. Structured 1-D Grid Generator
  • 12.3. Structured 2-D Grid Generators
  • 12.4. Structured to Unstructured Grid Converter
  • 12.5. Quasi 1-D Euler Solver
  • 12.6. Structured 2-D Euler/Navier-Stokes Solver
  • 12.7. Unstructured 2-D Euler/Navier-Stokes Solver
  • 12.8. Visualisation Tool
  • Bibliography
  • A. Appendix
  • A.1. Governing Equations in Differential Form
  • A.2. Quasilinear Form of the Euler Equations
  • A.3. Mathematical Character of the Governing Equations
  • A.3.1. Hyperbolic Equations
  • A.3.2. Parabolic Equations
  • A.3.3. Elliptic Equations
  • A.4. Navier-Stokes Equations in Rotating Frame of Reference
  • A.5. Navier-Stokes Equations Formulated for Moving Grids
  • A.6. Thin Shear Layer Approximation
  • A.7. Parabolised Navier-Stokes Equations
  • A.8. Axisymmetric Form of the Navier-Stokes Equations
  • A.9. Convective Flux Jacobian
  • A.10. Viscous Flux Jacobian
  • A.11. Transformation from Conservative to Characteristic Variables
  • A.12. GMRES Algorithm
  • A.13. Tensor Notation
  • Bibliography
  • Index