Computational fluid dynamics : principles and applications /
Saved in:
Author / Creator: | Blazek, J. |
---|---|
Edition: | 2nd ed. |
Imprint: | Amsterdam ; Boston : Elsevier, 2005. |
Description: | xx, 470 p. ; 25 cm. + 1 CD-ROM (4 3/4 in.) |
Language: | English |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/5921308 |
Table of Contents:
- Acknowledgements
- List of Symbols
- Abbreviations
- 1. Introduction
- 2. Governing Equations
- 2.1. The Flow and its Mathematical Description
- 2.2. Conservation Laws
- 2.2.1. The Continuity Equation
- 2.2.2. The Momentum Equation
- 2.2.3. The Energy Equation
- 2.3. Viscous Stresses
- 2.4. Complete System of the Navier-Stokes Equations
- 2.4.1. Formulation for a Perfect Gas
- 2.4.2. Formulation for a Real Gas
- 2.4.3. Simplifications to the Navier-Stokes Equations
- Bibliography
- 3. Principles of Solution of the Governing Equations
- 3.1. Spatial Discretisation
- 3.1.1. Finite Difference Method
- 3.1.2. Finite Volume Method
- 3.1.3. Finite Element Method
- 3.1.4. Other Discretisation Methods
- 3.1.5. Central and Upwind Schemes
- 3.2. Temporal Discretisation
- 3.2.1. Explicit Schemes
- 3.2.2. Implicit Schemes
- 3.3. Turbulence Modelling
- 3.4. Initial and Boundary Conditions
- Bibliography
- 4. Structured Finite Volume Schemes
- 4.1. Geometrical Quantities of a Control Volume
- 4.1.1. Two-Dimensional Case
- 4.1.2. Three-Dimensional Case
- 4.2. General Discretisation Methodologies
- 4.2.1. Cell-Centred Scheme
- 4.2.2. Cell-Vertex Scheme: Overlapping Control Volumes
- 4.2.3. Cell-Vertex Scheme: Dual Control Volumes
- 4.2.4. Cell-Centred versus Cell-Vertex Schemes
- 4.3. Discretisation of the Convective Fluxes
- 4.3.1. Central Scheme with Artificial Dissipation
- 4.3.2. Flux-Vector Splitting Schemes
- 4.3.3. Flux-Difference Splitting Schemes
- 4.3.4. Total Variation Diminishing Schemes
- 4.3.5. Limiter Functions
- 4.4. Discretisation of the Viscous Fluxes
- 4.4.1. Cell-Centred Scheme
- 4.4.2. Cell-Vertex Scheme
- Bibliography
- 5. Unstructured Finite Volume Schemes
- 5.1. Geometrical Quantities of a Control Volume
- 5.1.1. Two-Dimensional Case
- 5.1.2. Three-Dimensional Case
- 5.2. General Discretisation Methodologies
- 5.2.1. Cell-Centred Scheme
- 5.2.2. Median-Dual Cell-Vertex Scheme
- 5.2.3. Cell-Centred versus Median-Dual Scheme
- 5.3. Discretisation of the Convective Fluxes
- 5.3.1. Central Schemes with Artificial Dissipation
- 5.3.2. Upwind Schemes
- 5.3.3. Solution Reconstruction
- 5.3.4. Evaluation of the Gradients
- 5.3.5. Limiter Functions
- 5.4. Discretisation of the Viscous Fluxes
- 5.4.1. Element-Based Gradients
- 5.4.2. Average of Gradients
- Bibliography
- 6. Temporal Discretisation
- 6.1. Explicit Time-Stepping Schemes
- 6.1.1. Multistage Schemes (Runge-Kutta)
- 6.1.2. Hybrid Multistage Schemes
- 6.1.3. Treatment of the Source Term
- 6.1.4. Determination of the Maximum Time Step
- 6.2. Implicit Time-Stepping Schemes
- 6.2.1. Matrix Form of the Implicit Operator
- 6.2.2. Evaluation of the Flux Jacobian
- 6.2.3. ADI Scheme
- 6.2.4. LU-SGS Scheme
- 6.2.5. Newton-Krylov Method
- 6.3. Methodologies for Unsteady Flows
- 6.3.1. Dual Time-Stepping for Explicit Multistage Schemes
- 6.3.2. Dual Time-Stepping for Implicit Schemes
- Bibliography
- 7. Turbulence Modelling
- 7.1. Basic Equations of Turbulence
- 7.1.1. Reynolds Averaging
- 7.1.2. Favre (Mass) Averaging
- 7.1.3. Reynolds-Averaged Navier-Stokes Equations
- 7.1.4. Favre- and Reynolds-Averaged Navier-Stokes Equations
- 7.1.5. Eddy-Viscosity Hypothesis
- 7.1.6. Non-Linear Eddy Viscosity
- 7.1.7. Reynolds-Stress Transport Equation
- 7.2. First-Order Closures
- 7.2.1. Spalart-Allmaras One-Equation Model
- 7.2.2. K-[epsilon] Two-Equation Model
- 7.2.3. SST Two-Equation Model of Menter
- 7.3. Large-Eddy Simulation
- 7.3.1. Spatial Filtering
- 7.3.2. Filtered Governing Equations
- 7.3.3. Subgrid-Scale Modelling
- 7.3.4. Wall Models
- 7.3.5. Detached Eddy Simulation
- Bibliography
- 8. Boundary Conditions
- 8.1. Concept of Dummy Cells
- 8.2. Solid Wall
- 8.2.1. Inviscid Flow
- 8.2.2. Viscous Flow
- 8.3. Farfield
- 8.3.1. Concept of Characteristic Variables
- 8.3.2. Modifications for Lifting Bodies
- 8.4. Inlet/Outlet Boundary
- 8.5. Injection Boundary
- 8.6. Symmetry Plane
- 8.7. Coordinate Cut
- 8.8. Periodic Boundaries
- 8.9. Interface Between Grid Blocks
- 8.10. Flow Gradients at Boundaries of Unstructured Grids
- Bibliography
- 9. Acceleration Techniques
- 9.1. Local Time-Stepping
- 9.2. Enthalpy Damping
- 9.3. Residual Smoothing
- 9.3.1. Central IRS on Structured Grids
- 9.3.2. Central IRS on Unstructured Grids
- 9.3.3. Upwind IRS on Structured Grids
- 9.4. Multigrid
- 9.4.1. Basic Multigrid Cycle
- 9.4.2. Multigrid Strategies
- 9.4.3. Implementation on Structured Grids
- 9.4.4. Implementation on Unstructured Grids
- 9.5. Preconditioning for Low Mach Numbers
- 9.5.1. Derivation of Preconditioned Equations
- 9.5.2. Implementation
- 9.5.3. Form of the Matrices
- Bibliography
- 10. Consistency, Accuracy and Stability
- 10.1. Consistency Requirements
- 10.2. Accuracy of Discretisation
- 10.3. Von Neumann Stability Analysis
- 10.3.1. Fourier Symbol and Amplification Factor
- 10.3.2. Convection Model Equation
- 10.3.3. Convection-Diffusion Model Equation
- 10.3.4. Explicit Time-Stepping
- 10.3.5. Implicit Time-Stepping
- 10.3.6. Derivation of the CFL Condition
- Bibliography
- 11. Principles of Grid Generation
- 11.1. Structured Grids
- 11.1.1. C-, H-, and O-Grid Topology
- 11.1.2. Algebraic Grid Generation
- 11.1.3. Elliptic Grid Generation
- 11.1.4. Hyperbolic Grid Generation
- 11.2. Unstructured Grids
- 11.2.1. Delaunay Triangulation
- 11.2.2. Advancing-Front Method
- 11.2.3. Generation of Anisotropic Grids
- 11.2.4. Mixed-Element/Hybrid Grids
- 11.2.5. Assessment and Improvement of Grid Quality
- Bibliography
- 12. Description of the Source Codes
- 12.1. Programs for Stability Analysis
- 12.2. Structured 1-D Grid Generator
- 12.3. Structured 2-D Grid Generators
- 12.4. Structured to Unstructured Grid Converter
- 12.5. Quasi 1-D Euler Solver
- 12.6. Structured 2-D Euler/Navier-Stokes Solver
- 12.7. Unstructured 2-D Euler/Navier-Stokes Solver
- 12.8. Visualisation Tool
- Bibliography
- A. Appendix
- A.1. Governing Equations in Differential Form
- A.2. Quasilinear Form of the Euler Equations
- A.3. Mathematical Character of the Governing Equations
- A.3.1. Hyperbolic Equations
- A.3.2. Parabolic Equations
- A.3.3. Elliptic Equations
- A.4. Navier-Stokes Equations in Rotating Frame of Reference
- A.5. Navier-Stokes Equations Formulated for Moving Grids
- A.6. Thin Shear Layer Approximation
- A.7. Parabolised Navier-Stokes Equations
- A.8. Axisymmetric Form of the Navier-Stokes Equations
- A.9. Convective Flux Jacobian
- A.10. Viscous Flux Jacobian
- A.11. Transformation from Conservative to Characteristic Variables
- A.12. GMRES Algorithm
- A.13. Tensor Notation
- Bibliography
- Index