Optics in magnetic multilayers and nanostructures /

Saved in:
Bibliographic Details
Author / Creator:Višňovský, Štefan.
Imprint:Boca Raton, Fla. ; London : CRC, 2006.
Description:521 p. : ill. ; 24 cm.
Language:English
Series:Optical science and engineering ; 108
Optical science and engineering (Boca Raton, Fla.) ; 108.
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/5928658
Hidden Bibliographic Details
ISBN:0849336864
Notes:Includes bibliographical references and index.
Standard no.:9780849336867
Table of Contents:
  • 1. Introduction
  • 1.1. History
  • 1.1.1. Early Studies
  • 1.1.2. Twentieth Century
  • 1.1.2.1. Metals
  • 1.1.2.2. Nonmetals
  • 1.1.2.3. Magnetooptic Vector Magnetometry
  • 1.1.2.4. Magnetooptic Spectroscopic Ellipsometry
  • 1.1.2.5. Practical Applications
  • 1.2. Magnetized Medium
  • 1.3. Propagation Parallel to Magnetization
  • 1.3.1. Faraday Effect
  • 1.3.2. Normal Incidence Polar Kerr Effect
  • 1.4. Voigt Effect
  • 1.5. Propagation in Anisotropic Media
  • 1.6. Reflection at an Arbitrary Angle of Incidence
  • 1.6.1. MO Polar Kerr Effect
  • 1.6.2. MO Longitudinal Kerr Effect
  • 1.6.3. MO Transverse Effect
  • 1.7. Multilayer Response
  • References
  • 2. Material Tensors
  • 2.1. Introduction
  • 2.2. Tensors in Magnetic Crystals
  • 2.2.1. Effect of Magnetization
  • 2.2.2. Susceptibility in Nonmagnetic Crystals
  • 2.2.3. Linear Magnetooptic Tensor
  • 2.2.4. Quadratic Magnetooptic Tensor
  • 2.3. Rotation About an Axis
  • 2.4. Frequency Dependence
  • 2.4.1. Time Invariance
  • 2.4.2. Causality
  • 2.5. Lorentz-Drude Model
  • 2.5.1. Hamiltonian
  • 2.5.2. Equations of Motion
  • 2.5.2.1. The Propagation Vector Parallel to Magnetization
  • 2.5.2.2. The Propagation Vector Perpendicular to Magnetization
  • 2.5.3. Susceptibility Tensor
  • 2.5.4. Real Dielectrics and Metals
  • 2.6. Semiclassical Susceptibility
  • 2.6.1. Quantum Hamiltonian
  • 2.6.2. Density Matrix Method
  • 2.6.3. Susceptibility Tensor
  • 2.6.3.1. Electric Dipole Contribution
  • 2.6.3.2. Magnetic Dipole and Electric Quadrupole Contributions
  • 2.6.3.3. Remarks
  • 2.6.4. Proper Values and Proper States
  • 2.6.4.1. s States
  • 2.6.4.2. p States
  • 2.6.4.3. d States
  • 2.6.5. Spectra
  • References
  • 3. Anisotropic Multilayers
  • 3.1. Introduction
  • 3.2. Proper Modes
  • 3.3. Matrix Representation of Planar Structures
  • 3.4. Waves in Isotropic Regions
  • 3.5. Reflection and Transmission
  • 3.6. Single Interface
  • References
  • 4. Polar Magnetization
  • 4.1. Introduction
  • 4.2. Normal Incidence
  • 4.2.1. Circular Representation
  • 4.2.1.1. Single Interface
  • 4.2.1.2. Thin Plate
  • 4.2.2. LP Representation
  • 4.3. Analytical Formulae
  • 4.3.1. Approximations
  • 4.3.1.1. Single Interface
  • 4.3.2. Linear Expressions
  • 4.3.3. Seven-Layer System
  • 4.3.3.1. Reflection
  • 4.3.3.2. Transmission
  • 4.3.4. Ultrathin Film Approximation
  • 4.3.5. Exchange Coupled Film
  • 4.4. Magnetic Superlattices
  • 4.4.1. Characteristic Matrix
  • 4.4.2. M Matrix in Periodic Structures
  • 4.4.3. Approximate Treatment
  • 4.4.4. Practical Aspects
  • 4.5. Oblique Incidence
  • 4.5.1. In-Plane Anisotropy
  • 4.5.2. Film-Substrate System
  • 4.5.2.1. M Matrix
  • 4.5.2.2. Expressions Entering the Reflection Matrix
  • 4.5.2.3. Interface Reflection Coefficients
  • 4.5.2.4. Explicit Form of the Reflection Matrix
  • 4.5.3. Normal Incidence
  • 4.5.4. Uniaxial Film on a Uniaxial Substrate
  • 4.5.5. Approximate Solution
  • References
  • 5. Longitudinal Magnetization
  • 5.1. Introduction
  • 5.2. Transfer Matrix
  • 5.2.1. Orthorhombic Anisotropy
  • 5.3. Magnetic Film-Magnetic Substrate System
  • 5.3.1. M Matrix
  • 5.3.2. Reflection Matrix
  • 5.3.3. Normal Incidence
  • 5.3.4. Uniaxial Film on a Uniaxial Substrate
  • 5.4. Approximate Solution for the Oblique Incidence
  • References
  • 6. Transverse Magnetization
  • 6.1. Introduction
  • 6.2. M Matrix
  • 6.2.1. Orthorhombic Media
  • 6.2.2. Uniaxial Media
  • 6.3. Film-Substrate System at Transverse Magnetization
  • 6.3.1. M Matrix of the System
  • 6.3.2. Reflection Characteristics
  • 6.4. Waveguide TM Modes
  • References
  • 7. Normal Incidence
  • 7.1. Introduction
  • 7.2. Wave Equation
  • 7.3. General M Matrix
  • 7.4. Examples
  • 7.4.1. General Anisotropy
  • 7.4.2. Isotropic Nonmagnetic Plate
  • 7.4.3. Isotropic Plate Magnetized Normal to the Interfaces
  • 7.4.4. Orthorhombic Crystal
  • 7.4.5. Voigt Effect in Cubic Crystals
  • 7.5. Nearly Normal Incidence
  • References
  • 8. Arbitrary Magnetization
  • 8.1. Introduction
  • 8.2. Matrix Representation
  • 8.3. Single Interface
  • 8.4. Characteristic Matrix
  • 8.5. Magnetic Film
  • 8.6. Film-Spacer System
  • 8.7. Transmission in a Film Substrate System
  • References
  • 9. Anisotropic Multilayer Gratings
  • 9.1. Introduction
  • 9.2. Fields in the Grating Region
  • 9.3. Product of Series
  • 9.4. Matrix Representation
  • 9.5. Matrix Formulation of the Solution
  • 9.6. Homogeneous Anisotropic Region
  • 9.7. Transmission and Interface Matrices
  • 9.8. Wave Diffraction on the Grating
  • 9.9. Multilayer Periodic Structures
  • 9.10. Isotropic Layers at Normal Incidence
  • 9.11. Homogeneous Isotropic Layers at Oblique Incidence
  • References
  • Appendix A. Circular Polarizations
  • Appendix B. Fresnel Formulae
  • Appendix C. Isotropic Multilayers
  • C.1. Film-Substrate System
  • C.1.1. TE Polarization
  • C.1.2. TM Polarization
  • C.2. Two-Layer System
  • C.2.1. TE Polarization
  • C.2.2. TM Polarization
  • C.2.3. Waveguide
  • Appendix D. Single Layer at Polar Magnetization
  • D.1. Single Interface
  • D.2. Single Layer
  • Appendix E. Chebyshev Polynomials
  • Appendix F. Proper Value Equation
  • Index