Optics in magnetic multilayers and nanostructures /
Saved in:
Author / Creator: | Višňovský, Štefan. |
---|---|
Imprint: | Boca Raton, Fla. ; London : CRC, 2006. |
Description: | 521 p. : ill. ; 24 cm. |
Language: | English |
Series: | Optical science and engineering ; 108 Optical science and engineering (Boca Raton, Fla.) ; 108. |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/5928658 |
Table of Contents:
- 1. Introduction
- 1.1. History
- 1.1.1. Early Studies
- 1.1.2. Twentieth Century
- 1.1.2.1. Metals
- 1.1.2.2. Nonmetals
- 1.1.2.3. Magnetooptic Vector Magnetometry
- 1.1.2.4. Magnetooptic Spectroscopic Ellipsometry
- 1.1.2.5. Practical Applications
- 1.2. Magnetized Medium
- 1.3. Propagation Parallel to Magnetization
- 1.3.1. Faraday Effect
- 1.3.2. Normal Incidence Polar Kerr Effect
- 1.4. Voigt Effect
- 1.5. Propagation in Anisotropic Media
- 1.6. Reflection at an Arbitrary Angle of Incidence
- 1.6.1. MO Polar Kerr Effect
- 1.6.2. MO Longitudinal Kerr Effect
- 1.6.3. MO Transverse Effect
- 1.7. Multilayer Response
- References
- 2. Material Tensors
- 2.1. Introduction
- 2.2. Tensors in Magnetic Crystals
- 2.2.1. Effect of Magnetization
- 2.2.2. Susceptibility in Nonmagnetic Crystals
- 2.2.3. Linear Magnetooptic Tensor
- 2.2.4. Quadratic Magnetooptic Tensor
- 2.3. Rotation About an Axis
- 2.4. Frequency Dependence
- 2.4.1. Time Invariance
- 2.4.2. Causality
- 2.5. Lorentz-Drude Model
- 2.5.1. Hamiltonian
- 2.5.2. Equations of Motion
- 2.5.2.1. The Propagation Vector Parallel to Magnetization
- 2.5.2.2. The Propagation Vector Perpendicular to Magnetization
- 2.5.3. Susceptibility Tensor
- 2.5.4. Real Dielectrics and Metals
- 2.6. Semiclassical Susceptibility
- 2.6.1. Quantum Hamiltonian
- 2.6.2. Density Matrix Method
- 2.6.3. Susceptibility Tensor
- 2.6.3.1. Electric Dipole Contribution
- 2.6.3.2. Magnetic Dipole and Electric Quadrupole Contributions
- 2.6.3.3. Remarks
- 2.6.4. Proper Values and Proper States
- 2.6.4.1. s States
- 2.6.4.2. p States
- 2.6.4.3. d States
- 2.6.5. Spectra
- References
- 3. Anisotropic Multilayers
- 3.1. Introduction
- 3.2. Proper Modes
- 3.3. Matrix Representation of Planar Structures
- 3.4. Waves in Isotropic Regions
- 3.5. Reflection and Transmission
- 3.6. Single Interface
- References
- 4. Polar Magnetization
- 4.1. Introduction
- 4.2. Normal Incidence
- 4.2.1. Circular Representation
- 4.2.1.1. Single Interface
- 4.2.1.2. Thin Plate
- 4.2.2. LP Representation
- 4.3. Analytical Formulae
- 4.3.1. Approximations
- 4.3.1.1. Single Interface
- 4.3.2. Linear Expressions
- 4.3.3. Seven-Layer System
- 4.3.3.1. Reflection
- 4.3.3.2. Transmission
- 4.3.4. Ultrathin Film Approximation
- 4.3.5. Exchange Coupled Film
- 4.4. Magnetic Superlattices
- 4.4.1. Characteristic Matrix
- 4.4.2. M Matrix in Periodic Structures
- 4.4.3. Approximate Treatment
- 4.4.4. Practical Aspects
- 4.5. Oblique Incidence
- 4.5.1. In-Plane Anisotropy
- 4.5.2. Film-Substrate System
- 4.5.2.1. M Matrix
- 4.5.2.2. Expressions Entering the Reflection Matrix
- 4.5.2.3. Interface Reflection Coefficients
- 4.5.2.4. Explicit Form of the Reflection Matrix
- 4.5.3. Normal Incidence
- 4.5.4. Uniaxial Film on a Uniaxial Substrate
- 4.5.5. Approximate Solution
- References
- 5. Longitudinal Magnetization
- 5.1. Introduction
- 5.2. Transfer Matrix
- 5.2.1. Orthorhombic Anisotropy
- 5.3. Magnetic Film-Magnetic Substrate System
- 5.3.1. M Matrix
- 5.3.2. Reflection Matrix
- 5.3.3. Normal Incidence
- 5.3.4. Uniaxial Film on a Uniaxial Substrate
- 5.4. Approximate Solution for the Oblique Incidence
- References
- 6. Transverse Magnetization
- 6.1. Introduction
- 6.2. M Matrix
- 6.2.1. Orthorhombic Media
- 6.2.2. Uniaxial Media
- 6.3. Film-Substrate System at Transverse Magnetization
- 6.3.1. M Matrix of the System
- 6.3.2. Reflection Characteristics
- 6.4. Waveguide TM Modes
- References
- 7. Normal Incidence
- 7.1. Introduction
- 7.2. Wave Equation
- 7.3. General M Matrix
- 7.4. Examples
- 7.4.1. General Anisotropy
- 7.4.2. Isotropic Nonmagnetic Plate
- 7.4.3. Isotropic Plate Magnetized Normal to the Interfaces
- 7.4.4. Orthorhombic Crystal
- 7.4.5. Voigt Effect in Cubic Crystals
- 7.5. Nearly Normal Incidence
- References
- 8. Arbitrary Magnetization
- 8.1. Introduction
- 8.2. Matrix Representation
- 8.3. Single Interface
- 8.4. Characteristic Matrix
- 8.5. Magnetic Film
- 8.6. Film-Spacer System
- 8.7. Transmission in a Film Substrate System
- References
- 9. Anisotropic Multilayer Gratings
- 9.1. Introduction
- 9.2. Fields in the Grating Region
- 9.3. Product of Series
- 9.4. Matrix Representation
- 9.5. Matrix Formulation of the Solution
- 9.6. Homogeneous Anisotropic Region
- 9.7. Transmission and Interface Matrices
- 9.8. Wave Diffraction on the Grating
- 9.9. Multilayer Periodic Structures
- 9.10. Isotropic Layers at Normal Incidence
- 9.11. Homogeneous Isotropic Layers at Oblique Incidence
- References
- Appendix A. Circular Polarizations
- Appendix B. Fresnel Formulae
- Appendix C. Isotropic Multilayers
- C.1. Film-Substrate System
- C.1.1. TE Polarization
- C.1.2. TM Polarization
- C.2. Two-Layer System
- C.2.1. TE Polarization
- C.2.2. TM Polarization
- C.2.3. Waveguide
- Appendix D. Single Layer at Polar Magnetization
- D.1. Single Interface
- D.2. Single Layer
- Appendix E. Chebyshev Polynomials
- Appendix F. Proper Value Equation
- Index