Diode lasers /
Saved in:
Author / Creator: | Sands, David, 1960- |
---|---|
Imprint: | Bristol ; Philadelphia : Institute of Physics Pub., c2005. |
Description: | xii, 451 p. : ill. ; 24 cm. |
Language: | English |
Series: | Series in optics and optoelectronics |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/5929948 |
Table of Contents:
- Preface
- 1. Introduction
- References
- 2. Essential semiconductor physics
- 2.1. Free electrons in semiconductors
- 2.2. Formation of bands in semiconductors
- 2.3. Band theory and conduction
- 2.4. Electron and hole statistics
- 2.5. Doping
- 2.6. Heavy doping
- 2.7. Recombination and generation
- 2.8. Energy bands in real semiconductors
- 2.9. Minority carrier lifetime
- 2.10. Minority carrier diffusion
- 2.11. Current continuity
- 2.12. Non-equilibrium carrier statistics
- 2.13. Summary
- 2.14. References
- 3. Laser fundamentals
- 3.1. Stimulated emission
- 3.2. Population inversion in semiconductors
- 3.3. The p-n homojunction laser
- 3.4. The active region and threshold current
- 3.5. Optical properties of the junction
- 3.6. Output characteristics of the homojunction laser
- 3.7. Summary
- 3.8. References
- 4. Optical properties of semiconductor materials
- 4.1. A model of the refractive index
- 4.2. The refractive index of a semiconductor laser cavity
- 4.3. Gain in semiconductors
- 4.3.1. The vector potential and the interaction Hamiltonian
- 4.3.2. Fermi's golden rule
- 4.3.2. The matrix element and densities of states
- 4.4. Summary
- 4.5. References
- 5. The double heterostructure laser
- 5.1. Introduction
- 5.2. Materials and epitaxy
- 5.2.1. Molecular beam epitaxy
- 5.2.1.1. MBE of aluminium gallium arsenide
- 5.2.1.2. MBE of indium gallium arsenide phosphide
- 5.2.2. Chemical vapour phase epitaxy
- 5.2.2.1. Hydride chemical vapour deposition
- 5.2.2.2. The trichloride process
- 5.2.2.3. MOCVD
- 5.3. Electronic properties of heterojunctions
- 5.3.1. Band bending at heterojunctions
- 5.4. The double heterostructure under forward bias
- 5.4.1. Recombination at interfaces
- 5.5. Optical properties of heterojunctions; transverse mode control and optical confinement
- 5.6. Materials and lasers
- 5.6.1. InP systems: InGaAs, InGaAsP, AlGaInP
- 5.6.2. InAs-InSb lasers
- 5.7. Lateral mode control
- 5.8. Summary
- 5.9. References
- 6. Quantum well lasers
- 6.1. Classical and quantum potential wells
- 6.2. Semiconductor quantum wells
- 6.3. Quantised states in finite wells
- 6.4. The density of states in two-dimensional systems
- 6.5. Optical transitions in semiconductor quantum wells
- 6.5.1. Gain in quantum wells
- 6.6. Strained quantum wells
- 6.7. Optical and electrical confinement
- 6.8. Optimised laser structures
- 6.9. Summary
- 6.10. References
- 7. The vertical cavity surface emitting laser
- 7.1. Fabry-Perot and waveguide modes
- 7.2. Practical VCSEL cavity confinement
- 7.3. Oxide confined devices
- 7.4. Long wavelength VCSELs
- 7.5. Visible VCSELs
- 7.6. Summary
- 7.7. References
- 8. Diode laser modelling
- 8.1. Rate equations; the idealised DH laser
- 8.2. Gain compression
- 8.3. Small signal rate equations
- 8.4. Modelling real laser diodes
- 8.4.1. InGaAsP/InP quantum well lasers
- 8.4.2. Separate confinement heterostructure quantum well laser
- 8.4.3. Three level rate equation models for quantum well SCH lasers
- 8.5. Electrical modelling
- 8.6. Circuit level modelling
- 8.7. Summary
- 8.8. References
- 9. Lightwave technology and fibre communications
- 9.1. An overview of fibre communications and its history
- 9.2. Materials and laser structures
- 9.3. Laser performance
- 9.3.1. Mode selectivity
- 9.3.2. Modulation response
- 9.3.3. Gain switching
- 9.3.4. Linewidth
- 9.4. Single wavelength sources
- 9.4.1. DBR lasers
- 9.4.2. DFB lasers
- 9.5. High bandwidth sources
- 9.6. Summary
- 9.7. References
- 10. High power diode lasers
- 10.1. Geometry of high power diode lasers
- 10.2. Single emitter broad area diode lasers
- 10.3. Lateral modes in broad area lasers
- 10.4. Controlling filamentation
- 10.4.1. Mode filtering
- 10.4.2. Materials engineering
- 10.5. Catastrophic optical damage
- 10.6. Very high power operation
- 10.7. Visible lasers
- 10.8. Near infra-red lasers
- 10.9. Mid infra-red diode lasers
- 10.10. Diode pumped solid state lasers
- 10.11. Summary of materials and trends
- 10.12. References
- 11. Blue lasers and quantum dots
- 11.1. Nitride growth
- 11.2. Optical and electronic properties of (Al,Ga,In)N
- 11.3. Laser diodes
- 11.4. Quantum dot lasers
- 11.5. Summary
- 11.6. References
- 12. Quantum cascade lasers
- 12.1. Quantum cascade structures
- 12.2. Minibands in superlattices
- 12.3. Intersubband transitions
- 12.4. Intersubband linewidth
- 12.5. Miniband cascade lasers
- 12.6. Terahertz emitters
- 12.7. Waveguides in quantum cascade structures
- 12.8. Summary
- 12.9. References
- Appendix I
- Appendix II
- Appendix III
- Appendix IV
- Appendix V
- Solutions
- Index