Diode lasers /

Saved in:
Bibliographic Details
Author / Creator:Sands, David, 1960-
Imprint:Bristol ; Philadelphia : Institute of Physics Pub., c2005.
Description:xii, 451 p. : ill. ; 24 cm.
Language:English
Series:Series in optics and optoelectronics
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/5929948
Hidden Bibliographic Details
Other authors / contributors:Institute of Physics (Great Britain)
ISBN:0750307269 (pbk.)
Notes:Includes bibliographical references and index.
Table of Contents:
  • Preface
  • 1. Introduction
  • References
  • 2. Essential semiconductor physics
  • 2.1. Free electrons in semiconductors
  • 2.2. Formation of bands in semiconductors
  • 2.3. Band theory and conduction
  • 2.4. Electron and hole statistics
  • 2.5. Doping
  • 2.6. Heavy doping
  • 2.7. Recombination and generation
  • 2.8. Energy bands in real semiconductors
  • 2.9. Minority carrier lifetime
  • 2.10. Minority carrier diffusion
  • 2.11. Current continuity
  • 2.12. Non-equilibrium carrier statistics
  • 2.13. Summary
  • 2.14. References
  • 3. Laser fundamentals
  • 3.1. Stimulated emission
  • 3.2. Population inversion in semiconductors
  • 3.3. The p-n homojunction laser
  • 3.4. The active region and threshold current
  • 3.5. Optical properties of the junction
  • 3.6. Output characteristics of the homojunction laser
  • 3.7. Summary
  • 3.8. References
  • 4. Optical properties of semiconductor materials
  • 4.1. A model of the refractive index
  • 4.2. The refractive index of a semiconductor laser cavity
  • 4.3. Gain in semiconductors
  • 4.3.1. The vector potential and the interaction Hamiltonian
  • 4.3.2. Fermi's golden rule
  • 4.3.2. The matrix element and densities of states
  • 4.4. Summary
  • 4.5. References
  • 5. The double heterostructure laser
  • 5.1. Introduction
  • 5.2. Materials and epitaxy
  • 5.2.1. Molecular beam epitaxy
  • 5.2.1.1. MBE of aluminium gallium arsenide
  • 5.2.1.2. MBE of indium gallium arsenide phosphide
  • 5.2.2. Chemical vapour phase epitaxy
  • 5.2.2.1. Hydride chemical vapour deposition
  • 5.2.2.2. The trichloride process
  • 5.2.2.3. MOCVD
  • 5.3. Electronic properties of heterojunctions
  • 5.3.1. Band bending at heterojunctions
  • 5.4. The double heterostructure under forward bias
  • 5.4.1. Recombination at interfaces
  • 5.5. Optical properties of heterojunctions; transverse mode control and optical confinement
  • 5.6. Materials and lasers
  • 5.6.1. InP systems: InGaAs, InGaAsP, AlGaInP
  • 5.6.2. InAs-InSb lasers
  • 5.7. Lateral mode control
  • 5.8. Summary
  • 5.9. References
  • 6. Quantum well lasers
  • 6.1. Classical and quantum potential wells
  • 6.2. Semiconductor quantum wells
  • 6.3. Quantised states in finite wells
  • 6.4. The density of states in two-dimensional systems
  • 6.5. Optical transitions in semiconductor quantum wells
  • 6.5.1. Gain in quantum wells
  • 6.6. Strained quantum wells
  • 6.7. Optical and electrical confinement
  • 6.8. Optimised laser structures
  • 6.9. Summary
  • 6.10. References
  • 7. The vertical cavity surface emitting laser
  • 7.1. Fabry-Perot and waveguide modes
  • 7.2. Practical VCSEL cavity confinement
  • 7.3. Oxide confined devices
  • 7.4. Long wavelength VCSELs
  • 7.5. Visible VCSELs
  • 7.6. Summary
  • 7.7. References
  • 8. Diode laser modelling
  • 8.1. Rate equations; the idealised DH laser
  • 8.2. Gain compression
  • 8.3. Small signal rate equations
  • 8.4. Modelling real laser diodes
  • 8.4.1. InGaAsP/InP quantum well lasers
  • 8.4.2. Separate confinement heterostructure quantum well laser
  • 8.4.3. Three level rate equation models for quantum well SCH lasers
  • 8.5. Electrical modelling
  • 8.6. Circuit level modelling
  • 8.7. Summary
  • 8.8. References
  • 9. Lightwave technology and fibre communications
  • 9.1. An overview of fibre communications and its history
  • 9.2. Materials and laser structures
  • 9.3. Laser performance
  • 9.3.1. Mode selectivity
  • 9.3.2. Modulation response
  • 9.3.3. Gain switching
  • 9.3.4. Linewidth
  • 9.4. Single wavelength sources
  • 9.4.1. DBR lasers
  • 9.4.2. DFB lasers
  • 9.5. High bandwidth sources
  • 9.6. Summary
  • 9.7. References
  • 10. High power diode lasers
  • 10.1. Geometry of high power diode lasers
  • 10.2. Single emitter broad area diode lasers
  • 10.3. Lateral modes in broad area lasers
  • 10.4. Controlling filamentation
  • 10.4.1. Mode filtering
  • 10.4.2. Materials engineering
  • 10.5. Catastrophic optical damage
  • 10.6. Very high power operation
  • 10.7. Visible lasers
  • 10.8. Near infra-red lasers
  • 10.9. Mid infra-red diode lasers
  • 10.10. Diode pumped solid state lasers
  • 10.11. Summary of materials and trends
  • 10.12. References
  • 11. Blue lasers and quantum dots
  • 11.1. Nitride growth
  • 11.2. Optical and electronic properties of (Al,Ga,In)N
  • 11.3. Laser diodes
  • 11.4. Quantum dot lasers
  • 11.5. Summary
  • 11.6. References
  • 12. Quantum cascade lasers
  • 12.1. Quantum cascade structures
  • 12.2. Minibands in superlattices
  • 12.3. Intersubband transitions
  • 12.4. Intersubband linewidth
  • 12.5. Miniband cascade lasers
  • 12.6. Terahertz emitters
  • 12.7. Waveguides in quantum cascade structures
  • 12.8. Summary
  • 12.9. References
  • Appendix I
  • Appendix II
  • Appendix III
  • Appendix IV
  • Appendix V
  • Solutions
  • Index