High temperature strain of metals and alloys : physical fundamentals /

Saved in:
Bibliographic Details
Author / Creator:Levitin, Valim.
Imprint:Weinheim ; Chichester : Wiley-VCH, c2006.
Description:vii, 171 p. : ill., ; 25 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/5930667
Hidden Bibliographic Details
ISBN:3527313389
Notes:Includes bibliographical references and index.
committed to retain 20170930 20421213 HathiTrust
Standard no.:9783527313389
Table of Contents:
  • Introduction
  • 1. Macroscopic Characteristics of Strain of Metallic Materials at High Temperatures
  • 2. In situ X-ray Investigation Technique
  • 2.1. Experimental Installation
  • 2.2. Measurement Procedure
  • 2.3. Measurements of Structural Parameters
  • 2.4. Diffraction Electron Microscopy
  • 2.5. Amplitude of Atomic Vibrations
  • 2.6. Materials under Investigation
  • 2.7. Summary
  • 3. Structural Parameters in High-Temperature Deformed Metals
  • 3.1. Evolution of Structural Parameters
  • 3.2. Dislocation Structure
  • 3.3. Distances between Dislocations in Sub-boundaries
  • 3.4. Sub-boundaries as Dislocation Sources and Obstacles
  • 3.5. Dislocations inside Subgrains
  • 3.6. Vacancy Loops and Helicoids
  • 3.7. Total Combination of Structural Peculiarities of High-temperature Deformation
  • 3.8. Summary
  • 4. Physical Mechanism of Strain at High Temperatures
  • 4.1. Physical Model and Theory
  • 4.2. Velocity of Dislocations
  • 4.3. Dislocation Density
  • 4.4. Rate of the Steady-State Creep
  • 4.5. Effect of Alloying: Relationship between Creep Rate and Mean-Square Atomic Amplitudes
  • 4.6. Formation of Jogs
  • 4.7. Significance of the Stacking Faults Energy
  • 4.8. Stability of Dislocation Sub-boundaries
  • 4.9. Scope of the Theory
  • 4.10. Summary
  • 5. Simulation of the Parameters Evolution
  • 5.1. Parameters of the Physical Model
  • 5.2. Equations
  • 5.2.1. Strain Rate
  • 5.2.2. Change in the Dislocation Density
  • 5.2.3. Dislocation Slip Velocity
  • 5.2.4. The Dislocation Climb Velocity
  • 5.2.5. The Dislocation Spacing in Sub-boundaries
  • 5.2.6. Variation of the Subgrain Size
  • 5.2.7. System of Differential Equations
  • 5.3. Results of Simulation
  • 5.4. Density of Dislocations during Stationary Creep
  • 5.5. Summary
  • 6. High-temperature Deformation of Superalloys
  • 6.1. [gamma prime] Phase in Superalloys
  • 6.2. Changes in the Matrix of Alloys during Strain
  • 6.3. Interaction of Dislocations and Particles
  • 6.4. Creep Rate. Length of Dislocation Segments
  • 6.5. Mechanism of Strain and the Creep Rate Equation
  • 6.6. Composition of the [gamma prime] Phase and Atomic Vibrations
  • 6.7. Influence of the Particle Size and Concentration
  • 6.8. The Prediction of Properties
  • 6.9. Summary
  • 7. Single Crystals of Superalloys
  • 7.1. Effect of Orientation on Properties
  • 7.2. Deformation at Lower Temperatures
  • 7.3. Deformation at Higher Temperatures
  • 7.4. On the Composition of Superalloys
  • 7.5. Rafting
  • 7.6. Effect of Composition and Temperature on [gamma/gamma prime] Misfit
  • 7.7. Other Creep Equations
  • 7.8. Summary
  • 8. Deformation of Some Refractory Metals
  • 8.1. The Creep Behavior
  • 8.2. Alloys of Refractory Metals
  • 8.3. Summary
  • Supplements
  • Supplement 1. On Dislocations in the Crystal Lattice
  • Supplement 2. On Screw Components in Sub-boundary Dislocation Networks
  • Supplement 3. Composition of Superalloys
  • References
  • Acknowledgements
  • Index