Time series analysis and its applications : with R examples.

Saved in:
Bibliographic Details
Author / Creator:Shumway, Robert H.
Edition:2nd ed.
Imprint:New York : Springer, c2006.
Description:xiii, 575 p. ; 25 cm.
Language:English
Series:Springer texts in statistics
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/6002318
Hidden Bibliographic Details
Other authors / contributors:Stoffer, David S.
ISBN:0387293175
Table of Contents:
  • 1. Characteristics of Time Series
  • 1.1. Introduction
  • 1.2. The Nature of Time Series Data
  • 1.3. Time Series Statistical Models
  • 1.4. Measures of Dependence: Autocorrelation and Cross-Correlation
  • 1.5. Stationary Time Series
  • 1.6. Estimation of Correlation
  • 1.7. Vector-Valued and Multidimensional Series
  • Problems
  • 2. Time Series Regression and Exploratory Data Analysis
  • 2.1. Introduction
  • 2.2. Classical Regression in the Time Series Context
  • 2.3. Exploratory Data Analysis
  • 2.4. Smoothing in the Time Series Context
  • Problems
  • 3. ARIMA Models
  • 3.1. Introduction
  • 3.2. Autoregressive Moving Average Models
  • 3.3. Difference Equations
  • 3.4. Autocorrelation and Partial Autocorrelation Functions
  • 3.5. Forecasting
  • 3.6. Estimation
  • 3.7. Integrated Models for Nonstationary Data
  • 3.8. Building ARIMA Models
  • 3.9. Multiplicative Seasonal ARIMA Models
  • Problems
  • 4. Spectral Analysis and Filtering
  • 4.1. Introduction
  • 4.2. Cyclical Behavior and Periodicity
  • 4.3. The Spectral Density
  • 4.4. Periodogram and Discrete Fourier Transform
  • 4.5. Nonparametric Spectral Estimation
  • 4.6. Multiple Series and Cross-Spectra
  • 4.7. Linear Filters
  • 4.8. Parametric Spectral Estimation
  • 4.9. Dynamic Fourier Analysis and Wavelets
  • 4.10. Lagged Regression Models
  • 4.11. Signal Extraction and Optimum Filtering
  • 4.12. Spectral Analysis of Multidimensional Series
  • Problems
  • 5. Additional Time Domain Topics
  • 5.1. Introduction
  • 5.2. Long Memory ARMA and Fractional Differencing
  • 5.3. GARCH Models
  • 5.4. Threshold Models
  • 5.5. Regression with Autocorrelated Errors
  • 5.6. Lagged Regression: Transfer Function Modeling
  • 5.7. Multivariate ARMAX Models
  • Problems
  • 6. State-Space Models
  • 6.1. Introduction
  • 6.2. Filtering, Smoothing, and Forecasting
  • 6.3. Maximum Likelihood Estimation
  • 6.4. Missing Data Modifications
  • 6.5. Structural Models: Signal Extraction and Forecasting
  • 6.6. ARMAX Models in State-Space Form
  • 6.7. Bootstrapping State-Space Models
  • 6.8. Dynamic Linear Models with Switching
  • 6.9. Nonlinear and Non-normal State-Space Models Using Monte Carlo Methods
  • 6.10. Stochastic Volatility
  • 6.11. State-Space and ARMAX Models for Longitudinal Data Analysis
  • Problems
  • 7. Statistical Methods in the Frequency Domain
  • 7.1. Introduction
  • 7.2. Spectral Matrices and Likelihood Functions
  • 7.3. Regression for Jointly Stationary Series
  • 7.4. Regression with Deterministic Inputs
  • 7.5. Random Coefficient Regression
  • 7.6. Analysis of Designed Experiments
  • 7.7. Discrimination and Cluster Analysis
  • 7.8. Principal Components and Factor Analysis
  • 7.9. The Spectral Envelope
  • Problems
  • Appendix A. Large Sample Theory
  • A.1. Convergence Modes
  • A.2. Central Limit Theorems
  • A.3. The Mean and Autocorrelation Functions
  • Appendix B. Time Domain Theory
  • B.1. Hilbert Spaces and the Projection Theorem
  • B.2. Causal Conditions for ARMA Models
  • B.3. Large Sample Distribution of the AR(p) Conditional Least Squares Estimators
  • B.4. The Wold Decomposition
  • Appendix C. Spectral Domain Theory
  • C.1. Spectral Representation Theorem
  • C.2. Large Sample Distribution of the DFT and Smoothed Periodogram
  • C.3. The Complex Multivariate Normal Distribution
  • References
  • Index