Condensed matter field theory /

Saved in:
Bibliographic Details
Author / Creator:Altland, Alexander.
Imprint:Cambridge, UK ; New York : Cambridge University Press, 2006.
Description:xii, 624 p. : ill. ; 26 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/6019772
Hidden Bibliographic Details
Other authors / contributors:Simons, Ben.
ISBN:0521845084 (hbk.)
Notes:Includes bibliographical references and index.
Standard no.:9780521845083
Table of Contents:
  • Preface
  • 1. From particles to fields
  • 1.1. Classical harmonic chain: phonons
  • 1.2. Functional analysis and variational principles
  • 1.3. Maxwell's equations as a variational principle
  • 1.4. Quantum chain
  • 1.5. Quantum electrodynamics
  • 1.6. Noether's theorem
  • 1.7. Summary and outlook
  • 1.8. Problems
  • 2. Second quantization
  • 2.1. Introduction to second quantization
  • 2.2. Applications of second quantization
  • 2.3. Summary and outlook
  • 2.4. Problems
  • 3. Feynman path integral
  • 3.1. The path integral: general formalism
  • 3.2. Construction of the path integral
  • 3.3. Applications of the Feynman path integral
  • 3.4. Summary and outlook
  • 3.5. Problems
  • 4. Functional field integral
  • 4.1. Construction of the many-body path integral
  • 4.2. Field integral for the quantum partition function
  • 4.3. Field theoretical bosonization: a case study
  • 4.4. Summary and outlook
  • 4.5. Problems
  • 5. Perturbation theory
  • 5.1. General structures and low-order expansions
  • 5.2. Ground state energy of the interacting electron gas
  • 5.3. Infinite-order expansions
  • 5.4. Summary and outlook
  • 5.5. Problems
  • 6. Broken symmetry and collective phenomena
  • 6.1. Mean-field theory
  • 6.2. Plasma theory of the interacting electron gas
  • 6.3. Bose-Einstein condensation and superfluidity
  • 6.4. Superconductivity
  • 6.5. Field theory of the disordered electron gas
  • 6.6. Summary and outlook
  • 6.7. Problems
  • 7. Response functions
  • 7.1. Crash course in modern experimental techniques
  • 7.2. Linear response theory
  • 7.3. Analytic structure of correlation functions
  • 7.4. Electromagnetic linear response
  • 7.5. Summary and outlook
  • 7.6. Problems
  • 8. The renormalization group
  • 8.1. The one-dimensional Ising model
  • 8.2. Dissipative quantum tunneling
  • 8.3. Renormalization group: general theory
  • 8.4. RG analysis of the ferromagnetic transition
  • 8.5. RG analysis of the nonlinear [sigma]-model
  • 8.6. Berezinskii-Kosterlitz-Thouless transition
  • 8.7. Summary and outlook
  • 8.8. Problems
  • 9. Topology
  • 9.1. Example: particle on a ring
  • 9.2. Homotopy
  • 9.3. [theta]-Terms
  • 9.4. Wess-Zumino terms
  • 9.5. Chern-Simons terms
  • 9.6. Summary and outlook
  • 9.7. Problems
  • Index