Introduction to asymptotic methods /

Saved in:
Bibliographic Details
Author / Creator:Awrejcewicz, J. (Jan)
Imprint:Boca Raton, FL : Chapman & Hall/CRC, 2006.
Description:xviii, 251 p. : ill. ; 25 cm.
Language:English
Series:CRC series--modern mechanics and mathematics ; [5]
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/6094888
Hidden Bibliographic Details
Other authors / contributors:Krysʹko, V. A. (Vadim Anatolʹevich), 1937-
ISBN:1584886773 (alk. paper)
9781584886778
Notes:Includes bibliographical references (p. 233-242) and index.
Table of Contents:
  • Introduction
  • 1. Elements of mathematical modeling
  • 1.1. Structure of a mathematical model
  • 1.2. Examples of reducing problems to a dimensionless form
  • 1.3. Mathematical model adequacy and properties. Regular and singular perturbations
  • 2. Expansion of functions and mathematical methods
  • 2.1. Expansions of elementary functions into power series
  • 2.1.1. Newton's binomial
  • 2.1.2. Taylor and Maclaurin series
  • 2.1.3. Estimation of approximating functions values
  • 2.1.4. Estimation of approximating values of definite integrals
  • 2.1.5. Approximating solution of Cauchy problem for ordinary differential equations
  • 2.2. Mathematical methods of perturbations
  • 2.2.1. Perturbation along a parameter and coordinates. Classical method of a small parameter
  • 2.2.2. Comparison of infinitely small and infinitely large functions. Scaling functions. Magnitude order quantities
  • 2.2.3. Asymptotical sequences and decompositions
  • 2.2.4. Nonuniform asymptotic decompositions
  • 2.2.5. Operations on asymptotic decompositions
  • 2.2.6. Asymptotic series. Comparison of asymptotic and convergent series. Advantages of application of asymptotic series and decompositions
  • Exercises
  • 3. Regular and singular perturbations
  • 3.1. Introduction. Asymptotic approximation with respect to a parameter
  • 3.2. Nonuniformities of a classical perturbation approach
  • 3.3. Method of "elongated" parameters
  • 3.4. Method of deformed variables
  • 3.5. Method of scaling and full approximation
  • 3.5.1. Deformation of one independent variable
  • 3.5.2. Deformation of two independent variables
  • 3.5.3. Method of full approximation
  • 3.6. Multiple scale methods
  • 3.6.1. Introduction
  • 3.6.2. Derivative decomposition along one and two variables
  • 3.6.3. Application to the problems of vibrations
  • 3.7. Variations of arbitrary constants
  • 3.8. Averaging methods
  • 3.8.1. Methods of Van der Pol and Krylov-Bogolubov-Mitropolskiy (KBM)
  • 3.8.2. Duffing's problem and the averaging procedure
  • 3.9. Matching asymptotic decompositions
  • 3.9.1. Fundamental notions and terminology
  • 3.9.2. Example with a boundary layer
  • 3.9.3. Fundamental rules and order of matching
  • 3.9.4. Construction of matched asymptotic expansion
  • 3.9.5. Example with a singularity
  • 3.9.6. On the choice of internal variables
  • 3.10. On the sources of nonuniformities
  • 3.11. On the influence of initial conditions
  • 3.12. Analysis of strongly nonlinear dynamical problems
  • 3.13. A few perturbation parameters
  • Exercises
  • 4. Wave-impact processes
  • 4.1. Definition of a cylinder-like piston wave
  • 4.1.1. Defining the problem, its solution and analysis
  • 4.1.2. Nonlinear solution in the vicinity of the piston
  • 4.1.3. Nonlinear solution in the vicinity of the front of the impact wave
  • 4.1.4. Methods of strained coordinates and renormalization
  • 4.1.5. Effectiveness of various asymptotic methods
  • 4.2. One-dimensional nonstationary nonlinear waves
  • 4.2.1. Formulation of the problem and its solution
  • 4.2.2. Renormalization method and singularities
  • 4.2.3. Analytical method of characteristics
  • 4.2.4. Multiple scales method
  • 5. Pade approximations
  • 5.1. Determination and characteristics of Pade approximations
  • 5.2. Application of Pade approximations
  • 5.2.1. Simple examples
  • 5.2.2. Supersonic flow round a thin cone in circumsonic regime
  • 5.2.3. Damping of the ball-shaped waves of pressure in a free space and in a tube
  • 5.2.4. Analysis of the "blow-up" phenomenon
  • 5.2.5. Homoclinic orbits
  • 5.2.6. Vibrations of nonlinear system with nonlinearity close to sign (x)
  • Exercises
  • 6. Averaging of ribbed plates
  • 6.1. Averaging in the theory of ribbed plates
  • 6.2. Kantorovich-Vlasov-type methods
  • 6.2.1. Kantorowich-Vlasov method (KVM)
  • 6.2.2. Vindiner method (VM)
  • 6.2.3. Method of variational iterations (MVI)
  • 6.2.4. Agranowsky-Baglay-Smirnov method (ABSM)
  • 6.2.5. Combined method (CM)
  • 6.2.6. Kantorovich-Vlasov method with the amendment
  • 6.2.7. Vindiner method with the amendment
  • 6.2.8. Vindiner method and variational iterations
  • 6.3. Transverse vibrations of rectangular plates
  • 6.4. Deflections of rectangular plates
  • 7. Chaos foresight
  • 7.1. The analyzed system
  • 7.2. Melnikov-Gruendler's approach
  • 7.3. Melnikov-Gruendler function
  • 7.4. Numerical results
  • 8. Continuous approximation of discontinuous systems
  • 8.1. An illustrative example
  • 8.2. Higher dimensional systems
  • 9. Nonlinear dynamics of a swinging oscillator
  • 9.1. Parametrical form of canonical transformations
  • 9.2. Function derivative
  • 9.3. Invariant normalization of Hamiltonians
  • 9.4. Algorithm of invariant normalization with the help of parametric transformations
  • 9.5. Algorithm of invariant normalization for asymptotical determination of the Poincare series
  • 9.6. Examples of asymptotical solutions
  • 9.7. A swinging oscillator
  • 9.8. Normal form
  • 9.9. Normal form integral
  • References
  • Index