Google's PageRank and beyond : the science of search engine rankings /
Saved in:
Author / Creator: | Langville, Amy N. |
---|---|
Imprint: | Princeton, N.J. : Princeton University Press, 2006. |
Description: | x, 224 p. : ill. ; 26 cm. |
Language: | English |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/6097478 |
Table of Contents:
- Preface ix
- Chapter 1. Introduction to Web Search Engines
- 1 1.1. A Short History of Information Retrieval
- 1 1.2. An Overview of Traditional Information Retrieval
- 5 1.3. Web Information Retrieval
- Chapter 2. Crawling, Indexing, and Query Processing
- 15 2.1. Crawling
- 15 2.1. x The Content Index
- 19 2.3. Query Processing
- Chapter 3. Ranking Webpages by Popularity
- 25 3.1. The Scene in 1998
- 25 3.2. Two Theses
- 26 3.3. Query-Independence
- Chapter 4. The Mathematics of Google's PageRank
- 4.1. The Original Summation Formula for PageRank
- 4.2. Matrix Representation of the Summation Equations
- 4.3. Problems with the Iterative Process
- 4.4. A Little Markov Chain Theory
- 4.5. Early Adjustments to the Basic Model
- 4.6. Computation of the PageRank Vector
- 4.7. Theorem and Proof for Spectrum of the Google Matrix
- Chapter 5. Parameters in the PageRank Model
- 5.1. The alpha; Factor
- 5.2. The Hyperlink Matrix H
- 5.3. The Teleportation Matrix E
- Chapter 6. The Sensitivity of PageRank
- 6.1. Sensitivity with respect to alpha;
- 6.2. Sensitivity with respect to H
- 6.3. Sensitivity with respect to v T
- 6.4. Other Analyses of Sensitivity
- 6.5. Sensitivity Theorems and Proofs
- Chapter 7. The PageRank Problem as a Linear System
- 7.1. Properties of (I -- alhpa;S)
- 7.2. Properties of (I -- alpha;H)
- 7.3. Proof of the PageRank Sparse Linear System
- Chapter 8. Issues in Large-Scale Implementation of PageRank
- 8.1. Storage Issues
- 8.2. Convergence Criterion
- 8.3. Accuracy
- 8.4. Dangling Nodes
- 8.5. Back Button Modeling
- Chapter 9. Accelerating the Computation of PageRank
- 9.1. An Adaptive Power Method
- 9.2. Extrapolation
- 9.3. Aggregation
- 9.4. Other Numerical Methods
- Chapter 10. Updating the PageRank Vector
- 10.1. The Two Updating Problems and their History
- 10.2. Restarting the Power Method
- 10.3. Approximate Updating Using Approximate Aggregation
- 10.4. Exact Aggregation
- 10.5. Exact vs. Approximate Aggregation
- 10.6. Updating with Iterative Aggregation
- 10.7. Determining the Partition
- 10.8. Conclusions
- Chapter 11. The HITS Method for Ranking Webpages 115
- 11.1. The HITS Algorithm
- 11.2. HITS Implementation
- 11.3. HITS Convergence
- 11.4. HITS Example
- 11.5. Strengths and Weaknesses of HITS
- 11.6. HITS's Relationship to Bibliometrics
- 11.7. Query-Independent HITS
- 11.8. Accelerating HITS
- 11.9. HITS Sensitivity
- Chapter 12. Other Link Methods for Ranking Webpages
- 12.1. SALSA
- 12.2. Hybrid Ranking Methods
- 12.3. Rankings based on Traffic Flow
- Chapter 13. The Future of Web Information Retrieval
- 3.1. Spam
- 3.2. Personalization
- 3.3. Clustering
- 3.4. Intelligent Agents
- 3.5. Trends and Time-Sensitive Search
- 3.6. Privacy and Censorship
- 3.7. Library Classification Schemes
- 3.8. Data Fusion
- Chapter 14. Resources for Web Information Retrieval
- 14.1. Resources for Getting Started
- 14.2. Resources for Serious Study
- Chapter 15. The Mathematics Guide
- 15.1. Linear Algebra
- 15.2. Perron-Frobenius Theory
- 15.3. Markov Chains
- 15.4. Perron Complementation
- 15.5. Stochastic Complementation
- 15.6. Censoring
- 15.7. Aggregation
- 15.8. Disaggregation
- Chapter 16. Chapter 16: Glossary
- Bibliography
- Index