Google's PageRank and beyond : the science of search engine rankings /

Saved in:
Bibliographic Details
Author / Creator:Langville, Amy N.
Imprint:Princeton, N.J. : Princeton University Press, 2006.
Description:x, 224 p. : ill. ; 26 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/6097478
Hidden Bibliographic Details
Varying Form of Title:Science of search engine rankings
Google page rank and beyond
Other authors / contributors:Meyer, C. D. (Carl Dean)
ISBN:0691122024
Notes:Includes bibliographical references (p. [205]-217) and index.
Standard no.:9780691122021
Table of Contents:
  • Preface ix
  • Chapter 1. Introduction to Web Search Engines
  • 1 1.1. A Short History of Information Retrieval
  • 1 1.2. An Overview of Traditional Information Retrieval
  • 5 1.3. Web Information Retrieval
  • Chapter 2. Crawling, Indexing, and Query Processing
  • 15 2.1. Crawling
  • 15 2.1. x The Content Index
  • 19 2.3. Query Processing
  • Chapter 3. Ranking Webpages by Popularity
  • 25 3.1. The Scene in 1998
  • 25 3.2. Two Theses
  • 26 3.3. Query-Independence
  • Chapter 4. The Mathematics of Google's PageRank
  • 4.1. The Original Summation Formula for PageRank
  • 4.2. Matrix Representation of the Summation Equations
  • 4.3. Problems with the Iterative Process
  • 4.4. A Little Markov Chain Theory
  • 4.5. Early Adjustments to the Basic Model
  • 4.6. Computation of the PageRank Vector
  • 4.7. Theorem and Proof for Spectrum of the Google Matrix
  • Chapter 5. Parameters in the PageRank Model
  • 5.1. The alpha; Factor
  • 5.2. The Hyperlink Matrix H
  • 5.3. The Teleportation Matrix E
  • Chapter 6. The Sensitivity of PageRank
  • 6.1. Sensitivity with respect to alpha;
  • 6.2. Sensitivity with respect to H
  • 6.3. Sensitivity with respect to v T
  • 6.4. Other Analyses of Sensitivity
  • 6.5. Sensitivity Theorems and Proofs
  • Chapter 7. The PageRank Problem as a Linear System
  • 7.1. Properties of (I -- alhpa;S)
  • 7.2. Properties of (I -- alpha;H)
  • 7.3. Proof of the PageRank Sparse Linear System
  • Chapter 8. Issues in Large-Scale Implementation of PageRank
  • 8.1. Storage Issues
  • 8.2. Convergence Criterion
  • 8.3. Accuracy
  • 8.4. Dangling Nodes
  • 8.5. Back Button Modeling
  • Chapter 9. Accelerating the Computation of PageRank
  • 9.1. An Adaptive Power Method
  • 9.2. Extrapolation
  • 9.3. Aggregation
  • 9.4. Other Numerical Methods
  • Chapter 10. Updating the PageRank Vector
  • 10.1. The Two Updating Problems and their History
  • 10.2. Restarting the Power Method
  • 10.3. Approximate Updating Using Approximate Aggregation
  • 10.4. Exact Aggregation
  • 10.5. Exact vs. Approximate Aggregation
  • 10.6. Updating with Iterative Aggregation
  • 10.7. Determining the Partition
  • 10.8. Conclusions
  • Chapter 11. The HITS Method for Ranking Webpages 115
  • 11.1. The HITS Algorithm
  • 11.2. HITS Implementation
  • 11.3. HITS Convergence
  • 11.4. HITS Example
  • 11.5. Strengths and Weaknesses of HITS
  • 11.6. HITS's Relationship to Bibliometrics
  • 11.7. Query-Independent HITS
  • 11.8. Accelerating HITS
  • 11.9. HITS Sensitivity
  • Chapter 12. Other Link Methods for Ranking Webpages
  • 12.1. SALSA
  • 12.2. Hybrid Ranking Methods
  • 12.3. Rankings based on Traffic Flow
  • Chapter 13. The Future of Web Information Retrieval
  • 3.1. Spam
  • 3.2. Personalization
  • 3.3. Clustering
  • 3.4. Intelligent Agents
  • 3.5. Trends and Time-Sensitive Search
  • 3.6. Privacy and Censorship
  • 3.7. Library Classification Schemes
  • 3.8. Data Fusion
  • Chapter 14. Resources for Web Information Retrieval
  • 14.1. Resources for Getting Started
  • 14.2. Resources for Serious Study
  • Chapter 15. The Mathematics Guide
  • 15.1. Linear Algebra
  • 15.2. Perron-Frobenius Theory
  • 15.3. Markov Chains
  • 15.4. Perron Complementation
  • 15.5. Stochastic Complementation
  • 15.6. Censoring
  • 15.7. Aggregation
  • 15.8. Disaggregation
  • Chapter 16. Chapter 16: Glossary
  • Bibliography
  • Index