Handbook of practical X-ray fluorescence analysis /

Saved in:
Bibliographic Details
Imprint:Berlin ; New York : Springer, ©2006.
Description:xix, 863 pages : illustrations (some color) ; 24 cm
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/6098818
Hidden Bibliographic Details
Other authors / contributors:Beckhoff, B. (Burkhard)
ISBN:9783540286035
3540286039
Notes:Includes bibliographical references (pages 783-833) and index.
Table of Contents:
  • 1. Introduction
  • 1.1. The Discovery of X-Rays and Origin of X-Ray Fluorescence Analysis
  • 1.2. Historical Progress of Laboratory X-Ray Fluorescence Spectrometers
  • 1.3. Measurement of Soft and Ultrasoft X-Rays
  • 1.3.1. X-Ray Tubes for Soft and Ultrasoft X-Rays
  • 1.3.2. Scientific Research Work on Soft and Ultrasoft X-Rays
  • 1.3.3. Synthetic Multilayer Analyzers
  • 1.3.4. Total Reflection Mirrors
  • 1.4. Analytical Precision and Accuracy in X-Ray Fluorescence Analysis
  • 1.4.1. Correction of Matrix Element Effects
  • 1.4.2. Quantitative Analysis of Heat Resistance and High Temperature Alloys
  • 1.4.3. Segregation Influencing Analytical Accuracy
  • 1.5. Concluding Remarks
  • References
  • 2. X-Ray Sources
  • 2.1. Introduction
  • 2.2. X-Ray Tubes
  • 2.2.1. Basic Physical Principles
  • 2.2.2. Technology of the Components
  • 2.2.3. Vacuum Envelope of X-Ray Tubes
  • 2.2.4. Tube Housing Assembly
  • 2.2.5. Modern X-Ray Tubes
  • 2.2.6. Some Applications
  • 2.3. Radioisotope Sources
  • 2.3.1. Basic Physical Principles
  • 2.3.2. Radioisotope Sources
  • 2.3.3. Production of Radioactive Sources
  • 2.3.4. Radiation Protection Regulations
  • 2.4. Synchrotron Radiation Sources
  • 2.4.1. SR Basics
  • 2.4.2. Storage Ring Description
  • 2.4.3. Generation of SR
  • 2.4.4. SRW Package
  • References
  • 3. X-Ray Optics
  • 3.1. Introduction
  • 3.2. Mirror Optics
  • 3.2.1. Total External Reflection Mirrors
  • 3.2.2. Capillary Optical Systems
  • 3.3. Diffraction Optics - Elements of Diffraction Theory
  • 3.3.1. Electromagnetic Wave Propagation
  • 3.3.2. Fraunhofer Approximation
  • 3.3.3. Fresnel Approximation
  • 3.3.4. Bragg Diffraction
  • 3.4. Optics for Monochromators
  • 3.4.1. Diffraction Gratings
  • 3.4.2. Multilayers for X-Ray Optics
  • 3.4.3. HOPG-based Optics
  • 3.4.4. Laterally Graded SiGe Crystals
  • 3.5. Focusing Diffraction Optics
  • 3.5.1. Zone Plates
  • 3.5.2. Reflection Zone Plate and Bragg-Fresnel Optics
  • 3.5.3. Bragg-Fresnel Holographic Optics
  • 3.6. Refraction X-Ray Optics
  • 3.6.1. Compound Refractive Lens
  • References
  • 4. X-Ray Detectors and XRF Detection Channels
  • 4.1. Introduction
  • 4.2. X-Ray Detectors and Signal Processing
  • 4.2.1. Introduction
  • 4.2.2. Basic Properties of X-Ray Detectors
  • 4.2.3. Classification of the Most Commonly Used X-Ray Detectors
  • 4.2.4. Semiconductor Detectors
  • 4.2.5. Silicon Drift Detectors
  • 4.2.6. Basics of Signal Electronics
  • 4.2.7. Shape Factors of some Filtering Amplifiers
  • 4.2.8. Auxiliary Functions
  • 4.2.9. Appendix 1 - The Laplace Transform
  • 4.2.10. Appendix 2 - Calculation of the ENC
  • 4.2.11. Appendix 3 - Digital Pulse Processing
  • 4.3. High Resolution Imaging X-Ray CCD Spectrometers
  • 4.3.1. Introduction
  • 4.3.2. Fully Depleted Backside Illuminated pn-CCDs
  • 4.3.3. Frame Store pn-CCDs for ROSITA, and XEUS
  • 4.3.4. Conclusion
  • 4.4. Wavelength Dispersive XRF and a Comparison with EDS
  • 4.4.1. Dispersion Materials for WDXRF
  • 4.4.2. Detectors and Electronics
  • 4.4.3. Optics Used for the WD Spectrometer and its Components
  • 4.4.4. Types of WDXRF Spectrometer
  • 4.4.5. Selected Applications Suitable for WDXRF
  • 4.4.6. Comparison of WDXRF and EDXRF
  • References
  • 5. Quantitative Analysis
  • 5.1. Overview
  • 5.2. Basic Fundamental Parameter Equations
  • 5.2.1. Fundamental Parameter Equations for Bulk Materials
  • 5.2.2. Direct Excitation
  • 5.2.3. Indirect Excitation
  • 5.2.4. Use of Standards
  • 5.3. Matrix Correction Methods and Influence Coefficients
  • 5.3.1. The Nature of Influence Coefficients
  • 5.3.2. The Lachance-Traill Algorithm
  • 5.3.3. The Claisse-Quintin Algorithm
  • 5.3.4. The COLA Algorithm
  • 5.3.5. The de Jongh Algorithm
  • 5.3.6. The Broll-Tertian Algorithm
  • 5.3.7. The Japanese Industrial Standard Method
  • 5.3.8. The Fundamental Algorithm
  • 5.4. Compensation Methods
  • 5.4.1. Internal Standards
  • 5.4.2. Standard Addition Methods
  • 5.4.3. Dilution Methods
  • 5.4.4. Scattered Radiation - Compton Scatter
  • 5.5. Thin and Layered Samples
  • 5.5.1. Direct Excitation by Polychromatic Sources
  • 5.5.2. Indirect Excitation by Polychromatic Sources
  • 5.5.3. Back-Calculation Schemes
  • 5.5.4. Solvability
  • 5.5.5. Applications
  • 5.6. Complex Excitation Effects and Light Elements
  • 5.6.1. Indirect Excitation Processes in the Low Energy Region
  • 5.6.2. Secondary Excitation by Electrons
  • 5.6.3. Cascade Effect
  • 5.7. Standardless Methods
  • 5.7.1. Introduction
  • 5.7.2. Semiquantitative Analysis
  • 5.7.3. Requirements for a Standardless Method
  • 5.8. Monte Carlo Methods
  • 5.9. Errors and Reliability Issues
  • 5.9.1. Mathematical Treatment of Statistical Errors
  • 5.9.2. Counting Statistics
  • 5.9.3. Detection Limits
  • 5.10. Standardized Methods
  • 5.10.1. Introduction
  • 5.10.2. General Features of Standardized Methods
  • 5.10.3. Standardized Methods Versus Universal Calibrations and Standardless Methods
  • 5.10.4. Summary
  • Symbols and Terminology
  • References
  • 6. Specimen Preparation
  • 6.1. Introduction
  • 6.2. Liquids
  • 6.2.1. Direct Analysis of Liquids and Solutions
  • 6.2.2. Conversion of Liquids into Quasi-Solid Specimens
  • 6.2.3. Conversion of Liquids into Organic Glassy Polymer Specimens
  • 6.2.4. Conversion of Liquids into Thin Films
  • 6.2.5. Analysis of Solutions after Preconcentration of Microimpurities
  • 6.3. Solid Specimens
  • 6.3.1. Metallic Specimens
  • 6.3.2. Powder Specimens
  • 6.3.3. Fused Specimens
  • 6.4. Biological Samples
  • 6.5. Aerosol and Dust Specimens
  • 6.6. Standards
  • References
  • 7. Methodological Developments and Applications
  • 7.1. Micro X-Ray Fluorescence Spectroscopy
  • 7.1.1. Introduction
  • 7.1.2. General Description of Micro-XRF Laboratory Units
  • 7.1.3. Applications of Micro X-Ray Fluorescence Analysis
  • 7.1.4. 3D Micro X-Ray Fluorescence Spectroscopy
  • 7.2. Micro-XRF with Synchrotron Radiation
  • 7.2.1. Introduction
  • 7.2.2. The General Setup
  • 7.2.3. Quantitative Aspect
  • 7.2.4. Elemental Mapping
  • 7.2.5. Examples of Application
  • 7.3. Total-Reflection X-Ray Fluorescence (TXRF) Wafer Analysis
  • 7.3.1. Introduction
  • 7.3.2. Analysis of Metallic Surface Contamination by Means of TXRF
  • 7.3.3. Historic Background
  • 7.3.4. Instrumentation of Total Reflection X-Ray Fluorescence Analysis
  • 7.3.5. Quantification of TXRF Analysis
  • 7.3.6. Surface Analysis
  • 7.3.7. Statistical Process Control (SPC)
  • 7.3.8. Automated Vapor Phase Decomposition (VPD) Preparation
  • 7.3.9. Low Z Determination - Problems - Solutions and Results
  • 7.3.10. Synchrotron Radiation Induced TXRF
  • 7.3.11. Conclusion and Outlook
  • 7.4. Analysis of Layers
  • 7.4.1. Introduction to the Analysis of Layers
  • 7.4.2. Theory of the Quantitative Layer Analysis: Yield Calculation
  • 7.4.3. Calculation of the Unknown Measurement Quantities Xij
  • 7.4.4. The WinFTM? Program
  • 7.4.5. Instruments
  • 7.4.6. Application Examples
  • 7.4.7. Summary and Outlook
  • 7.5. Environmental Studies
  • 7.5.1. Introduction
  • 7.5.2. Water
  • 7.5.3. Atmospheric Aerosol
  • 7.5.4. Monte Carlo Based Quantitative Methods for Single Particles
  • 7.5.5. Radionuclides and Radioactive Materials
  • 7.6. Geology, Mining, Metallurgy
  • 7.6.1. Introduction
  • 7.6.2. Macroscale
  • 7.6.3. Mesoscale
  • 7.6.4. Microscale
  • 7.6.5. Conclusions
  • 7.7. Application in Arts and Archaeology
  • 7.7.1. General Remarks
  • 7.7.2. Materials Groups
  • 7.7.3. Conclusions and Perspectives
  • 7.8. XRF-Application in Numismatics
  • 7.8.1. Introduction
  • 7.8.2. History of XRF Investigations of Coins
  • 7.8.3. General Remarks
  • 7.8.4. Preparation of Coins for Surface and Bulk Analysis
  • 7.8.5. Metals and Standards
  • 7.8.6. Accuracy and Precision
  • 7.8.7. Some Examples of Typical Questions of the Numismatist
  • 7.8.8. Conclusion
  • 7.8.9. Recommended Reading
  • 7.9. Analysis for Forensic Investigations
  • 7.9.1. The Specificity of Forensic Research
  • 7.9.2. The XRF Method in Forensic Research
  • 7.9.3. Conclusions
  • 7.10. X-Ray Fluorescence Analysis in the Life Sciences
  • 7.10.1. Introduction
  • 7.10.2. X-Ray Fluorescence Analysis by Means of X-Ray Tubes and Radioisotopes
  • 7.10.3. Total Reflection X-Ray Fluorescence Analysis (TXRF)
  • 7.10.4. Synchrotron Radiation Induced TXRF
  • 7.10.5. X-Ray Fluorescence Analysis Using Synchrotron Radiation
  • 7.11. Non-Invasive Identification Of Chemical Compounds by EDXRS
  • 7.11.1. Introduction
  • 7.11.2. Experimental Part
  • 7.11.3. Results
  • 7.11.4. Discussion
  • References
  • 8. Appendix
  • 8.1. X-Ray Safety and Protection
  • 8.1.1. Introduction
  • 8.1.2. Radiation Protection Quantities
  • 8.1.3. Health Hazards
  • 8.1.4. Measuring Instruments
  • 8.1.5. System of Radiation Protection
  • References
  • 8.2. Useful Data Sources and Links
  • Index