Handbook of practical X-ray fluorescence analysis /
Saved in:
Imprint: | Berlin ; New York : Springer, ©2006. |
---|---|
Description: | xix, 863 pages : illustrations (some color) ; 24 cm |
Language: | English |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/6098818 |
Table of Contents:
- 1. Introduction
- 1.1. The Discovery of X-Rays and Origin of X-Ray Fluorescence Analysis
- 1.2. Historical Progress of Laboratory X-Ray Fluorescence Spectrometers
- 1.3. Measurement of Soft and Ultrasoft X-Rays
- 1.3.1. X-Ray Tubes for Soft and Ultrasoft X-Rays
- 1.3.2. Scientific Research Work on Soft and Ultrasoft X-Rays
- 1.3.3. Synthetic Multilayer Analyzers
- 1.3.4. Total Reflection Mirrors
- 1.4. Analytical Precision and Accuracy in X-Ray Fluorescence Analysis
- 1.4.1. Correction of Matrix Element Effects
- 1.4.2. Quantitative Analysis of Heat Resistance and High Temperature Alloys
- 1.4.3. Segregation Influencing Analytical Accuracy
- 1.5. Concluding Remarks
- References
- 2. X-Ray Sources
- 2.1. Introduction
- 2.2. X-Ray Tubes
- 2.2.1. Basic Physical Principles
- 2.2.2. Technology of the Components
- 2.2.3. Vacuum Envelope of X-Ray Tubes
- 2.2.4. Tube Housing Assembly
- 2.2.5. Modern X-Ray Tubes
- 2.2.6. Some Applications
- 2.3. Radioisotope Sources
- 2.3.1. Basic Physical Principles
- 2.3.2. Radioisotope Sources
- 2.3.3. Production of Radioactive Sources
- 2.3.4. Radiation Protection Regulations
- 2.4. Synchrotron Radiation Sources
- 2.4.1. SR Basics
- 2.4.2. Storage Ring Description
- 2.4.3. Generation of SR
- 2.4.4. SRW Package
- References
- 3. X-Ray Optics
- 3.1. Introduction
- 3.2. Mirror Optics
- 3.2.1. Total External Reflection Mirrors
- 3.2.2. Capillary Optical Systems
- 3.3. Diffraction Optics - Elements of Diffraction Theory
- 3.3.1. Electromagnetic Wave Propagation
- 3.3.2. Fraunhofer Approximation
- 3.3.3. Fresnel Approximation
- 3.3.4. Bragg Diffraction
- 3.4. Optics for Monochromators
- 3.4.1. Diffraction Gratings
- 3.4.2. Multilayers for X-Ray Optics
- 3.4.3. HOPG-based Optics
- 3.4.4. Laterally Graded SiGe Crystals
- 3.5. Focusing Diffraction Optics
- 3.5.1. Zone Plates
- 3.5.2. Reflection Zone Plate and Bragg-Fresnel Optics
- 3.5.3. Bragg-Fresnel Holographic Optics
- 3.6. Refraction X-Ray Optics
- 3.6.1. Compound Refractive Lens
- References
- 4. X-Ray Detectors and XRF Detection Channels
- 4.1. Introduction
- 4.2. X-Ray Detectors and Signal Processing
- 4.2.1. Introduction
- 4.2.2. Basic Properties of X-Ray Detectors
- 4.2.3. Classification of the Most Commonly Used X-Ray Detectors
- 4.2.4. Semiconductor Detectors
- 4.2.5. Silicon Drift Detectors
- 4.2.6. Basics of Signal Electronics
- 4.2.7. Shape Factors of some Filtering Amplifiers
- 4.2.8. Auxiliary Functions
- 4.2.9. Appendix 1 - The Laplace Transform
- 4.2.10. Appendix 2 - Calculation of the ENC
- 4.2.11. Appendix 3 - Digital Pulse Processing
- 4.3. High Resolution Imaging X-Ray CCD Spectrometers
- 4.3.1. Introduction
- 4.3.2. Fully Depleted Backside Illuminated pn-CCDs
- 4.3.3. Frame Store pn-CCDs for ROSITA, and XEUS
- 4.3.4. Conclusion
- 4.4. Wavelength Dispersive XRF and a Comparison with EDS
- 4.4.1. Dispersion Materials for WDXRF
- 4.4.2. Detectors and Electronics
- 4.4.3. Optics Used for the WD Spectrometer and its Components
- 4.4.4. Types of WDXRF Spectrometer
- 4.4.5. Selected Applications Suitable for WDXRF
- 4.4.6. Comparison of WDXRF and EDXRF
- References
- 5. Quantitative Analysis
- 5.1. Overview
- 5.2. Basic Fundamental Parameter Equations
- 5.2.1. Fundamental Parameter Equations for Bulk Materials
- 5.2.2. Direct Excitation
- 5.2.3. Indirect Excitation
- 5.2.4. Use of Standards
- 5.3. Matrix Correction Methods and Influence Coefficients
- 5.3.1. The Nature of Influence Coefficients
- 5.3.2. The Lachance-Traill Algorithm
- 5.3.3. The Claisse-Quintin Algorithm
- 5.3.4. The COLA Algorithm
- 5.3.5. The de Jongh Algorithm
- 5.3.6. The Broll-Tertian Algorithm
- 5.3.7. The Japanese Industrial Standard Method
- 5.3.8. The Fundamental Algorithm
- 5.4. Compensation Methods
- 5.4.1. Internal Standards
- 5.4.2. Standard Addition Methods
- 5.4.3. Dilution Methods
- 5.4.4. Scattered Radiation - Compton Scatter
- 5.5. Thin and Layered Samples
- 5.5.1. Direct Excitation by Polychromatic Sources
- 5.5.2. Indirect Excitation by Polychromatic Sources
- 5.5.3. Back-Calculation Schemes
- 5.5.4. Solvability
- 5.5.5. Applications
- 5.6. Complex Excitation Effects and Light Elements
- 5.6.1. Indirect Excitation Processes in the Low Energy Region
- 5.6.2. Secondary Excitation by Electrons
- 5.6.3. Cascade Effect
- 5.7. Standardless Methods
- 5.7.1. Introduction
- 5.7.2. Semiquantitative Analysis
- 5.7.3. Requirements for a Standardless Method
- 5.8. Monte Carlo Methods
- 5.9. Errors and Reliability Issues
- 5.9.1. Mathematical Treatment of Statistical Errors
- 5.9.2. Counting Statistics
- 5.9.3. Detection Limits
- 5.10. Standardized Methods
- 5.10.1. Introduction
- 5.10.2. General Features of Standardized Methods
- 5.10.3. Standardized Methods Versus Universal Calibrations and Standardless Methods
- 5.10.4. Summary
- Symbols and Terminology
- References
- 6. Specimen Preparation
- 6.1. Introduction
- 6.2. Liquids
- 6.2.1. Direct Analysis of Liquids and Solutions
- 6.2.2. Conversion of Liquids into Quasi-Solid Specimens
- 6.2.3. Conversion of Liquids into Organic Glassy Polymer Specimens
- 6.2.4. Conversion of Liquids into Thin Films
- 6.2.5. Analysis of Solutions after Preconcentration of Microimpurities
- 6.3. Solid Specimens
- 6.3.1. Metallic Specimens
- 6.3.2. Powder Specimens
- 6.3.3. Fused Specimens
- 6.4. Biological Samples
- 6.5. Aerosol and Dust Specimens
- 6.6. Standards
- References
- 7. Methodological Developments and Applications
- 7.1. Micro X-Ray Fluorescence Spectroscopy
- 7.1.1. Introduction
- 7.1.2. General Description of Micro-XRF Laboratory Units
- 7.1.3. Applications of Micro X-Ray Fluorescence Analysis
- 7.1.4. 3D Micro X-Ray Fluorescence Spectroscopy
- 7.2. Micro-XRF with Synchrotron Radiation
- 7.2.1. Introduction
- 7.2.2. The General Setup
- 7.2.3. Quantitative Aspect
- 7.2.4. Elemental Mapping
- 7.2.5. Examples of Application
- 7.3. Total-Reflection X-Ray Fluorescence (TXRF) Wafer Analysis
- 7.3.1. Introduction
- 7.3.2. Analysis of Metallic Surface Contamination by Means of TXRF
- 7.3.3. Historic Background
- 7.3.4. Instrumentation of Total Reflection X-Ray Fluorescence Analysis
- 7.3.5. Quantification of TXRF Analysis
- 7.3.6. Surface Analysis
- 7.3.7. Statistical Process Control (SPC)
- 7.3.8. Automated Vapor Phase Decomposition (VPD) Preparation
- 7.3.9. Low Z Determination - Problems - Solutions and Results
- 7.3.10. Synchrotron Radiation Induced TXRF
- 7.3.11. Conclusion and Outlook
- 7.4. Analysis of Layers
- 7.4.1. Introduction to the Analysis of Layers
- 7.4.2. Theory of the Quantitative Layer Analysis: Yield Calculation
- 7.4.3. Calculation of the Unknown Measurement Quantities Xij
- 7.4.4. The WinFTM? Program
- 7.4.5. Instruments
- 7.4.6. Application Examples
- 7.4.7. Summary and Outlook
- 7.5. Environmental Studies
- 7.5.1. Introduction
- 7.5.2. Water
- 7.5.3. Atmospheric Aerosol
- 7.5.4. Monte Carlo Based Quantitative Methods for Single Particles
- 7.5.5. Radionuclides and Radioactive Materials
- 7.6. Geology, Mining, Metallurgy
- 7.6.1. Introduction
- 7.6.2. Macroscale
- 7.6.3. Mesoscale
- 7.6.4. Microscale
- 7.6.5. Conclusions
- 7.7. Application in Arts and Archaeology
- 7.7.1. General Remarks
- 7.7.2. Materials Groups
- 7.7.3. Conclusions and Perspectives
- 7.8. XRF-Application in Numismatics
- 7.8.1. Introduction
- 7.8.2. History of XRF Investigations of Coins
- 7.8.3. General Remarks
- 7.8.4. Preparation of Coins for Surface and Bulk Analysis
- 7.8.5. Metals and Standards
- 7.8.6. Accuracy and Precision
- 7.8.7. Some Examples of Typical Questions of the Numismatist
- 7.8.8. Conclusion
- 7.8.9. Recommended Reading
- 7.9. Analysis for Forensic Investigations
- 7.9.1. The Specificity of Forensic Research
- 7.9.2. The XRF Method in Forensic Research
- 7.9.3. Conclusions
- 7.10. X-Ray Fluorescence Analysis in the Life Sciences
- 7.10.1. Introduction
- 7.10.2. X-Ray Fluorescence Analysis by Means of X-Ray Tubes and Radioisotopes
- 7.10.3. Total Reflection X-Ray Fluorescence Analysis (TXRF)
- 7.10.4. Synchrotron Radiation Induced TXRF
- 7.10.5. X-Ray Fluorescence Analysis Using Synchrotron Radiation
- 7.11. Non-Invasive Identification Of Chemical Compounds by EDXRS
- 7.11.1. Introduction
- 7.11.2. Experimental Part
- 7.11.3. Results
- 7.11.4. Discussion
- References
- 8. Appendix
- 8.1. X-Ray Safety and Protection
- 8.1.1. Introduction
- 8.1.2. Radiation Protection Quantities
- 8.1.3. Health Hazards
- 8.1.4. Measuring Instruments
- 8.1.5. System of Radiation Protection
- References
- 8.2. Useful Data Sources and Links
- Index