Multiple scattering : interaction of time-harmonic waves with N obstacles /
Saved in:
Author / Creator: | Martin, P. A. |
---|---|
Imprint: | Cambridge : Cambridge University Press, 2006. |
Description: | xii, 437 p. ; 25 cm. |
Language: | English |
Series: | Encyclopedia of mathematics and its applications ; 107 |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/6103225 |
Table of Contents:
- Preface
- 1. Introduction
- 1.1. What is 'multiple scattering'?
- 1.2. Narrowing the scope: previous reviews and omissions
- 1.3. Acoustic scattering by N obstacles
- 1.4. Multiple scattering of electromagnetic waves
- 1.5. Multiple scattering of elastic waves
- 1.6. Multiple scattering of water waves
- 1.7. Overview of the book
- 2. Addition theorems in two dimensions
- 2.1. Introduction
- 2.2. Cartesian coordinates
- 2.3. Hobson's theorem
- 2.4. Wavefunctions
- 2.5. Addition theorems
- 2.6. The separation matrices S and S
- 2.7. Use of rotation matrices
- 2.8. Two-centre expansions
- 2.9. Elliptical wavefunctions
- 2.10. Vector cylindrical wavefunctions
- 2.11. Multipoles for water waves
- 3. Addition theorems in three dimensions
- 3.1. Introduction
- 3.2. Spherical harmonics
- 3.3. Legendre's addition theorem
- 3.4. Cartesian coordinates
- 3.5. Hobson's theorem
- 3.6. Wavefunctions and the operator Y[Characters not reproducible]
- 3.7. First derivatives of spherical wavefunctions
- 3.8. Axisymmetric addition theorems
- 3.9. A useful lemma
- 3.10. Composition formula for the operator Y[Characters not reproducible]
- 3.11. Addition theorem for j[subscript n]Y[Characters not reproducible]
- 3.12. Addition theorem for h[Characters not reproducible] Y[Characters not reproducible]
- 3.13. The separation matrices S and S
- 3.14. Two-centre expansions
- 3.15. Use of rotation matrices
- 3.16. Alternative expressions for S(bz)
- 3.17. Vector spherical wavefunctions
- 3.18. Multipoles for water waves
- 4. Methods based on separation of variables
- 4.1. Introduction
- 4.2. Separation of variables for one circular cylinder
- 4.3. Notation
- 4.4. Multipole method for two circular cylinders
- 4.5. Multipole method for N circular cylinders
- 4.6. Separation of variables for one sphere
- 4.7. Multipole method for two spheres
- 4.8. Multipole method for N spheres
- 4.9. Electromagnetic waves
- 4.10. Elastic waves
- 4.11. Water waves
- 4.12. Separation of variables in other coordinate systems
- 5. Integral equation methods, I: basic theory and applications
- 5.1. Introduction
- 5.2. Wave sources
- 5.3. Layer potentials
- 5.4. Explicit formulae in two dimensions
- 5.5. Explicit formulae in three dimensions
- 5.6. Green's theorem
- 5.7. Scattering and radiation problems
- 5.8. Integral equations: general remarks
- 5.9. Integral equations: indirect method
- 5.10. Integral equations: direct method
- 6. Integral equation methods, II: further results and applications
- 6.1. Introduction
- 6.2. Transmission problems
- 6.3. Inhomogeneous obstacles
- 6.4. Electromagnetic waves
- 6.5. Elastic waves
- 6.6. Water waves
- 6.7. Cracks and other thin scatterers
- 6.8. Modified integral equations: general remarks
- 6.9. Modified fundamental solutions
- 6.10. Combination methods
- 6.11. Augmentation methods
- 6.12. Application of exact Green's functions
- 6.13. Twersky's method
- 6.14. Fast multipole methods
- 7. Null-field and T-matrix methods
- 7.1. Introduction
- 7.2. Radiation problems
- 7.3. Kupradze's method and related methods
- 7.4. Scattering problems
- 7.5. Null-field equations for radiation problems: one obstacle
- 7.6. Null-field equations for scattering problems: one obstacle
- 7.7. Infinite sets of functions
- 7.8. Solution of the null-field equations
- 7.9. The T-matrix for one obstacle
- 7.10. The T-matrix for two obstacles
- 7.11. The T-matrix for N obstacles
- 8. Approximations
- 8.1. Introduction
- 8.2. Small scatterers
- 8.3. Foldy's method
- 8.4. Point scatterers
- 8.5. Wide-spacing approximations
- 8.6. Random arrangements of small scatterers; suspensions
- Appendices
- A. Legendre functions
- B. Integrating a product of three spherical harmonics; Gaunt coefficients
- C. Rotation matrices
- D. One-dimensional finite-part integrals
- E. Proof of Theorem 5.4
- F. Two-dimensional finite-part integrals
- G. Maue's formula
- H. Volume potentials
- I. Boundary integral equations for G[superscript E]
- References
- Citation index
- Subject index