Light scattering by systems of particles : null-field method with discrete sources : theory and programs /
Saved in:
Author / Creator: | Doicu, Adrian. |
---|---|
Imprint: | Berlin ; New York : Springer, c2006. |
Description: | xiii, 322 p. : ill. (some col.) ; 24 cm + 1 CD-ROM (4 3/4 in.) |
Language: | English |
Series: | Springer series in optical sciences ; 124 |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/6116854 |
Table of Contents:
- 1. Basic Theory of Electromagnetic Scattering
- 1.1. Maxwell's Equations and Constitutive Relations
- 1.2. Incident Field
- 1.2.1. Polarization
- 1.2.2. Vector Spherical Wave Expansion
- 1.3. Internal Field
- 1.3.1. Anisotropic Media
- 1.3.2. Chiral Media
- 1.4. Scattered Field
- 1.4.1. Stratton-Chu Formulas
- 1.4.2. Far-Field Pattern and Amplitude Matrix
- 1.4.3. Phase and Extinction Matrices
- 1.4.4. Extinction, Scattering and Absorption Cross-Sections
- 1.4.5. Optical Theorem
- 1.4.6. Reciprocity
- 1.5. Transition Matrix
- 1.5.1. Definition
- 1.5.2. Unitarity and Symmetry
- 1.5.3. Randomly Oriented Particles
- 2. Null-Field Method
- 2.1. Homogeneous and Isotropic Particles
- 2.1.1. General Formulation
- 2.1.2. Instability
- 2.1.3. Symmetries of the Transition Matrix
- 2.1.4. Practical Considerations
- 2.1.5. Surface Integral Equation Method
- 2.1.6. Spherical Particles
- 2.2. Homogeneous and Chiral Particles
- 2.3. Homogeneous and Anisotropic Particles
- 2.4. Inhomogeneous Particles
- 2.4.1. Formulation with Addition Theorem
- 2.4.2. Formulation without Addition Theorem
- 2.5. Layered Particles
- 2.5.1. General Formulation
- 2.5.2. Practical Formulation
- 2.5.3. Formulation with Discrete Sources
- 2.5.4. Concentrically Layered Spheres
- 2.6. Multiple Particles
- 2.6.1. General Formulation
- 2.6.2. Formulation for a System with N Particles
- 2.6.3. Superposition T-matrix Method
- 2.6.4. Formulation with Phase Shift Terms
- 2.6.5. Recursive Aggregate T-matrix Algorithm
- 2.7. Composite Particles
- 2.7.1. General Formulation
- 2.7.2. Formulation for a Particle with N Constituents
- 2.7.3. Formulation with Discrete Sources
- 2.8. Complex Particles
- 2.9. Effective Medium Model
- 2.9.1. T-matrix Formulation
- 2.9.2. Generalized Lorentz-Lorenz Law
- 2.9.3. Generalized Ewald-Oseen Extinction Theorem
- 2.9.4. Pair Distribution Functions
- 2.10. Particle on or near an Infinite Surface
- 2.10.1. Particle on or near a Plane Surface
- 2.10.2. Particle on or near an Arbitrary Surface
- 3. Simulation Results
- 3.1. T-matrix Program
- 3.1.1. Complete Uniform Distribution Function
- 3.1.2. Incomplete Uniform Distribution Function
- 3.2. Electromagnetics Programs
- 3.2.1. T-matrix Programs
- 3.2.2. MMP Program
- 3.2.3. DDSCAT Program
- 3.2.4. CST Microwave Studio Program
- 3.3. Homogeneous, Axisymmetric and Nonaxisymmetric Particles
- 3.3.1. Axisymmetric Particles
- 3.3.2. Nonaxisymmetric Particles
- 3.3.3. Triangular Surface Patch Model
- 3.4. Inhomogeneous Particles
- 3.5. Layered Particles
- 3.6. Multiple Particles
- 3.7. Composite Particles
- 3.8. Complex Particles
- 3.9. Particle on or Near a Plane Surface
- 3.10. Effective Medium Model
- A. Spherical Functions
- A.1. Spherical Bessel Functions
- A.2. Legendre Functions
- B. Wave Functions
- B.1. Scalar Wave Functions
- B.2. Vector Wave Functions
- B.3. Rotations
- B.4. Translations
- C. Computational Aspects in Effective Medium Theory
- C.1. Computation of the Integral I[Characters not reproducible]
- C.2. Computation of the Integral I[Characters not reproducible]
- C.3. Computation of the Terms S[Characters not reproducible] and S[Characters not reproducible]
- D. Completeness of Vector Spherical Wave Functions
- References
- Index