Geometric Qp functions /

Saved in:
Bibliographic Details
Author / Creator:Xiao, Jie, 1963-
Imprint:Basel ; Boston : Birkhàˆuser, c2006.
Description:x, 240 p. ; 24 cm.
Language:English
Series:Frontiers in mathematics
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/6167609
Hidden Bibliographic Details
ISBN:3764377623 (alk. paper)
9783764377625
Notes:Includes bibliographical references (p. [227]-237) and index.
Table of Contents:
  • Preface
  • 1. Preliminaries
  • 1.1. Background
  • 1.2. Logarithmic Conformal Mappings
  • 1.3. Conformal Domains and Superpositions
  • 1.4. Descriptions via Harmonic Majorants
  • 1.5. Regularity for the Euler-Lagrange Equation
  • 1.6. Notes
  • 2. Poisson versus Berezin with Generalizations
  • 2.1. Boundary Value and Brownian Motion
  • 2.2. Derivative-free Module via Poisson Extension
  • 2.3. Derivative-free Module via Berezin Transformation
  • 2.4. Mixture of Derivative and Quotient
  • 2.5. Dirichlet Double Integral without Derivative
  • 2.6. Notes
  • 3. Isomorphism, Decomposition and Discreteness
  • 3.1. Carleson Measures under an Integral Operator
  • 3.2. Isomorphism to a Holomorphic Morrey Space
  • 3.3. Decomposition via Bergman Style Kernels
  • 3.4. Discreteness by Derivatives
  • 3.5. Characterization in Terms of a Conjugate Pair
  • 3.6. Notes
  • 4. Invariant Preduality through Hausdorff Capacity
  • 4.1. Nonlinear Integrals and Maximal Operators
  • 4.2. Adams Type Dualities
  • 4.3. Quadratic Tent Spaces
  • 4.4. Preduals under Invariant Pairing
  • 4.5. Invariant Duals of Vanishing Classes
  • 4.6. Notes
  • 5. Cauchy Pairing with Expressions and Extremities
  • 5.1. Background on Cauchy Pairing
  • 5.2. Cauchy Duality by Dot Product
  • 5.3. Atom-like Representations
  • 5.4. Extreme Points of Unit Balls
  • 5.5. Notes
  • 6. As Symbols of Hankel and Volterra Operators
  • 6.1. Hankel and Volterra from Small to Large Spaces
  • 6.2. Carleson Embeddings for Dirichlet Spaces
  • 6.3. More on Carleson Embeddings for Dirichlet Spaces
  • 6.4. Hankel and Volterra on Dirichlet Spaces
  • 6.5. Notes
  • 7. Estimates for Growth and Decay
  • 7.1. Convexity Inequalities
  • 7.2. Exponential Integrabilities
  • 7.3. Hadamard Convolutions
  • 7.4. Characteristic Bounds of Derivatives
  • 7.5. Notes
  • 8. Holomorphic Q-Classes on Hyperbolic Riemann Surfaces
  • 8.1. Basics about Riemann Surfaces
  • 8.2. Area and Seminorm Inequalities
  • 8.3. Intermediate Setting - BMOA Class
  • 8.4. Sharpness
  • 8.5. Limiting Case - Bloch Classes
  • 8.6. Notes
  • Bibliography
  • Index