Theory of asset pricing /

Saved in:
Bibliographic Details
Author / Creator:Pennacchi, George Gaetano.
Imprint:Boston : Pearson/Addison-Wesley, c2008.
Description:xvii, 457 p. : ill. ; 24 cm.
Language:English
Series:The Addison-Wesley series in finance
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/6242011
Hidden Bibliographic Details
ISBN:032112720X (alk. paper)
9780321127204 (alk. paper)
Notes:Includes bibliographical references (p. 415-431) and index.
Table of Contents:
  • Preface
  • Part I. Single-Period Portfolio Choice and Asset Pricing
  • 1. Expected Utility and Risk Aversion
  • 1.1. Preferences When Returns Are Uncertain
  • 1.2. Risk Aversion and Risk Premia
  • 1.3. Risk Aversion and Portfolio Choice
  • 1.4. Summary
  • 1.5. Exercises
  • 2. Mean-Variance Analysis
  • 2.1. Assumptions on Preferences and Asset Returns
  • 2.2. Investor Indifference Relations
  • 2.3. The Efficient Frontier
  • 2.3.1. A Simple Example
  • 2.3.2. Mathematics of the Efficient Frontier
  • 2.3.3. Portfolio Separation
  • 2.4. The Efficient Frontier with a Riskless Asset
  • 2.4.1. An Example with Negative Exponential Utility
  • 2.5. An Application to Cross-Hedging
  • 2.6. Summary
  • 2.7. Exercises
  • 3. CAPM, Arbitrage, and Linear Factor Models
  • 3.1. The Capital Asset Pricing Model
  • 3.1.1. Characteristics of the Tangency Portfolio
  • 3.1.2. Market Equilibrium
  • 3.2. Arbitrage
  • 3.2.1. Examples of Arbitrage Pricing
  • 3.3. Linear Factor Models
  • 3.4. Summary
  • 3.5. Exercises
  • 4. Consumption-Savings Decisions and State Pricing
  • 4.1. Consumption and Portfolio Choices
  • 4.2. An Asset Pricing Interpretation
  • 4.2.1. Real versus Nominal Returns
  • 4.2.2. Risk Premia and the Marginal Utility of Consumption
  • 4.2.3. The Relationship to CAPM
  • 4.2.4. Bounds on Risk Premia
  • 4.3. Market Completeness, Arbitrage, and State Pricing
  • 4.3.1. Complete Markets Assumptions
  • 4.3.2. Arbitrage and State Prices
  • 4.3.3. Risk-Neutral Probabilities
  • 4.3.4. State Pricing Extensions
  • 4.4. Summary
  • 4.5. Exercises
  • Part II. Multiperiod Consumption, Portfolio Choice, and Asset Pricing
  • 5. A Multiperiod Discrete-Time Model of Consumption and Portfolio Choice
  • 5.1. Assumptions and Notation of the Model
  • 5.1.1. Preferences
  • 5.1.2. The Dynamics of Wealth
  • 5.2. Solving the Multiperiod Model
  • 5.2.1. The Final Period Solution
  • 5.2.2. Deriving the Bellman Equation
  • 5.2.3. The General Solution
  • 5.3. Example Using Log Utility
  • 5.4. Summary
  • 5.5. Exercises
  • 6. Multiperiod Market Equilibrium
  • 6.1. Asset Pricing in the Multiperiod Model
  • 6.1.1. The Multiperiod Pricing Kernel
  • 6.2. The Lucas Model of Asset Pricing
  • 6.2.1. Including Dividends in Asset Returns
  • 6.2.2. Equating Dividends to Consumption
  • 6.2.3. Asset Pricing Examples
  • 6.2.4. A Lucas Model with Labor Income
  • 6.3. Rational Asset Price Bubbles
  • 6.3.1. Examples of Bubble Solutions
  • 6.3.2. The Likelihood of Rational Bubbles
  • 6.4. Summary
  • 6.5. Exercises
  • Part III. Contingent Claims Pricing
  • 7. Basics of Derivative Pricing
  • 7.1. Forward and Option Contracts
  • 7.1.1. Forward Contracts on Assets Paying Dividends
  • 7.1.2. Basic Characteristics of Option Prices
  • 7.2. Binomial Option Pricing
  • 7.2.1. Valuing a One-Period Option
  • 7.2.2. Valuing a Multiperiod Option
  • 7.3. Binomial Model Applications
  • 7.3.1. Calibrating the Model
  • 7.3.2. Valuing an American Option
  • 7.3.3. Options on Dividend-Paying Assets
  • 7.4. Summary
  • 7.5. Exercises
  • 8. Essentials of Diffusion Processes and Ito's Lemma
  • 8.1. Pure Brownian Motion
  • 8.1.1. The Continuous-Time Limit
  • 8.2. Diffusion Processes
  • 8.2.1. Definition of an Ito Integral
  • 8.3. Functions of Continuous-Time Processes and Ito's Lemma
  • 8.3.1. Geometric Brownian Motion
  • 8.3.2. Kolmogorov Equation
  • 8.3.3. Multivariate Diffusions and Ito's Lemma
  • 8.4. Summary
  • 8.5. Exercises
  • 9. Dynamic Hedging and PDE Valuation
  • 9.1. Black-Scholes Option Pricing
  • 9.1.1. Portfolio Dynamics in Continuous Time
  • 9.1.2. Black-Scholes Model Assumptions
  • 9.1.3. The Hedge Portfolio
  • 9.1.4. No-Arbitrage Implies a PDE
  • 9.1. An Equilibrium Term Structure Model
  • 9.2.1. A Bond Risk Premium
  • 9.2.2. Characteristics of Bond Prices
  • 9.3. Option Pricing with Random Interest Rates
  • 9.4. Summary
  • 9.5. Exercises
  • 10. Arbitrage, Martingales, and Pricing Kernels
  • 10.1. Arbitrage and Martingales
  • 10.1.1. A Change in Probability: Girsanov's Theorem
  • 10.1.2. Money Market Deflator
  • 10.1.3. Feynman-Kac Solution
  • 10.2. Arbitrage and Pricing Kernels
  • 10.2.1. Linking the Valuation Methods
  • 10.2.2. The Multivariate Case
  • 10.3. Alternative Price Deflators
  • 10.4. Applications
  • 10.4.1. Continuous Dividends
  • 10.4.2. The Term Structure Revisited
  • 10.5. Summary
  • 10.6. Exercises
  • 11. Mixing Diffusion and Jump Processes
  • 11.1. Modeling Jumps in Continuous Time
  • 11.2. Ito's Lemma for Jump-Diffusion Processes
  • 11.3. Valuing Contingent Claims
  • 11.3.1. An Imperfect Hedge
  • 11.3.2. Diversifiable Jump Risk
  • 11.3.3. Lognormal Jump Proportions
  • 11.3.4. Nondiversifiable Jump Risk
  • 11.3.5. Black-Scholes versus Jump-Diffusion Model
  • 11.4. Summary
  • 11.5. Exercises
  • Part IV. Asset Pricing in Continuous Time
  • 12. Continuous-Time Consumption and Portfolio Choice
  • 12.1. Model Assumptions
  • 12.2. Continuous-Time Dynamic Programming
  • 12.3. Solving the Continuous-Time Problem
  • 12.3.1. Constant Investment Opportunities
  • 12.3.2. Changing Investment Opportunities
  • 12.4. The Martingale Approach to Consumption and Portfolio Choice
  • 12.4.1. Market Completeness Assumptions
  • 12.4.2. The Optimal Consumption Plan
  • 12.4.3. The Portfolio Allocation
  • 12.4.4. An Example
  • 12.5. Summary
  • 12.6. Exercises
  • 13. Equilibrium Asset Returns
  • 13.1. An Intertemporal Capital Asset Pricing Model
  • 13.1.1. Constant Investment Opportunities
  • 13.1.2. Stochastic Investment Opportunities
  • 13.1.3. An Extension to State-Dependent Utility
  • 13.2. Breeden's Consumption CAPM
  • 13.3. A Cox, Ingersoll, and Ross Production Economy
  • 13.3.1. An Example Using Log Utility
  • 13.4. Summary
  • 13.5. Exercises
  • 14. Time-Inseparable Utility
  • 14.1. Constantinides' Internal Habit Model
  • 14.1.1. Assumptions
  • 14.1.2. Consumption and Portfolio Choices
  • 14.2. Campbell and Cochrane's External Habit Model
  • 14.2.1. Assumptions
  • 14.2.2. Equilibrium Asset Prices
  • 14.3. Recursive Utility
  • 14.3.1. A Model by Obstfeld
  • 14.3.2. Discussion of the Model
  • 14.4. Summary
  • 14.5. Exercises
  • Part V. Additional Topics in Asset Pricing
  • 15. Behavioral Finance and Asset Pricing
  • 15.1. The Effects of Psychological Biases on Asset Prices
  • 15.1.1. Assumptions
  • 15.1.2. Solving the Model
  • 15.1.3. Model Results
  • 15.2. The Impact of Irrational Traders on Asset Prices
  • 15.2.1. Assumptions
  • 15.2.2. Solution Technique
  • 15.2.3. Analysis of the Results
  • 15.3. Summary
  • 15.4. Exercises
  • 16. Asset Pricing with Differential Information
  • 16.1. Equilibrium with Private Information
  • 16.1.1. Grossman Model Assumptions
  • 16.1.2. Individuals'Asset Demands
  • 16.1.3. A Competitive Equilibrium
  • 16.1.4. A Rational Expectations Equilibrium
  • 16.1.5. A Noisy Rational Expectations Equilibrium
  • 16.2. Asymmetric Information, Trading, and Markets
  • 16.2.1. Kyle Model Assumptions
  • 16.2.2. Trading and Pricing Strategies
  • 16.2.3. Analysis of the Results
  • 16.3. Summary
  • 16.4. Exercises
  • 17. Models of the Term Structure of Interest Rates
  • 17.1. Equilibrium Term Structure Models
  • 17.1.1. Affine Models
  • 17.1.2. Quadratic Gaussian Models
  • 17.1.3. Other Equilibrium Models
  • 17.2. Valuation Models for Interest Rate Derivatives
  • 17.2.1. Heath-Jarrow-Morton Models
  • 17.2.2. Market Models
  • 17.2.3. Random Field Models
  • 17.3. Summary
  • 17.4. Exercises
  • 18. Models of Default Risk
  • 18.1. The Structural Approach
  • 18.2. The Reduced-Form Approach
  • 18.2.1. A Zero-Recovery Bond
  • 18.2.2. Specifying Recovery Values
  • 18.2.3. Examples
  • 18.3. Summary
  • 18.4. Exercises
  • References
  • Index