Theory of asset pricing /
Saved in:
Author / Creator: | Pennacchi, George Gaetano. |
---|---|
Imprint: | Boston : Pearson/Addison-Wesley, c2008. |
Description: | xvii, 457 p. : ill. ; 24 cm. |
Language: | English |
Series: | The Addison-Wesley series in finance |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/6242011 |
Table of Contents:
- Preface
- Part I. Single-Period Portfolio Choice and Asset Pricing
- 1. Expected Utility and Risk Aversion
- 1.1. Preferences When Returns Are Uncertain
- 1.2. Risk Aversion and Risk Premia
- 1.3. Risk Aversion and Portfolio Choice
- 1.4. Summary
- 1.5. Exercises
- 2. Mean-Variance Analysis
- 2.1. Assumptions on Preferences and Asset Returns
- 2.2. Investor Indifference Relations
- 2.3. The Efficient Frontier
- 2.3.1. A Simple Example
- 2.3.2. Mathematics of the Efficient Frontier
- 2.3.3. Portfolio Separation
- 2.4. The Efficient Frontier with a Riskless Asset
- 2.4.1. An Example with Negative Exponential Utility
- 2.5. An Application to Cross-Hedging
- 2.6. Summary
- 2.7. Exercises
- 3. CAPM, Arbitrage, and Linear Factor Models
- 3.1. The Capital Asset Pricing Model
- 3.1.1. Characteristics of the Tangency Portfolio
- 3.1.2. Market Equilibrium
- 3.2. Arbitrage
- 3.2.1. Examples of Arbitrage Pricing
- 3.3. Linear Factor Models
- 3.4. Summary
- 3.5. Exercises
- 4. Consumption-Savings Decisions and State Pricing
- 4.1. Consumption and Portfolio Choices
- 4.2. An Asset Pricing Interpretation
- 4.2.1. Real versus Nominal Returns
- 4.2.2. Risk Premia and the Marginal Utility of Consumption
- 4.2.3. The Relationship to CAPM
- 4.2.4. Bounds on Risk Premia
- 4.3. Market Completeness, Arbitrage, and State Pricing
- 4.3.1. Complete Markets Assumptions
- 4.3.2. Arbitrage and State Prices
- 4.3.3. Risk-Neutral Probabilities
- 4.3.4. State Pricing Extensions
- 4.4. Summary
- 4.5. Exercises
- Part II. Multiperiod Consumption, Portfolio Choice, and Asset Pricing
- 5. A Multiperiod Discrete-Time Model of Consumption and Portfolio Choice
- 5.1. Assumptions and Notation of the Model
- 5.1.1. Preferences
- 5.1.2. The Dynamics of Wealth
- 5.2. Solving the Multiperiod Model
- 5.2.1. The Final Period Solution
- 5.2.2. Deriving the Bellman Equation
- 5.2.3. The General Solution
- 5.3. Example Using Log Utility
- 5.4. Summary
- 5.5. Exercises
- 6. Multiperiod Market Equilibrium
- 6.1. Asset Pricing in the Multiperiod Model
- 6.1.1. The Multiperiod Pricing Kernel
- 6.2. The Lucas Model of Asset Pricing
- 6.2.1. Including Dividends in Asset Returns
- 6.2.2. Equating Dividends to Consumption
- 6.2.3. Asset Pricing Examples
- 6.2.4. A Lucas Model with Labor Income
- 6.3. Rational Asset Price Bubbles
- 6.3.1. Examples of Bubble Solutions
- 6.3.2. The Likelihood of Rational Bubbles
- 6.4. Summary
- 6.5. Exercises
- Part III. Contingent Claims Pricing
- 7. Basics of Derivative Pricing
- 7.1. Forward and Option Contracts
- 7.1.1. Forward Contracts on Assets Paying Dividends
- 7.1.2. Basic Characteristics of Option Prices
- 7.2. Binomial Option Pricing
- 7.2.1. Valuing a One-Period Option
- 7.2.2. Valuing a Multiperiod Option
- 7.3. Binomial Model Applications
- 7.3.1. Calibrating the Model
- 7.3.2. Valuing an American Option
- 7.3.3. Options on Dividend-Paying Assets
- 7.4. Summary
- 7.5. Exercises
- 8. Essentials of Diffusion Processes and Ito's Lemma
- 8.1. Pure Brownian Motion
- 8.1.1. The Continuous-Time Limit
- 8.2. Diffusion Processes
- 8.2.1. Definition of an Ito Integral
- 8.3. Functions of Continuous-Time Processes and Ito's Lemma
- 8.3.1. Geometric Brownian Motion
- 8.3.2. Kolmogorov Equation
- 8.3.3. Multivariate Diffusions and Ito's Lemma
- 8.4. Summary
- 8.5. Exercises
- 9. Dynamic Hedging and PDE Valuation
- 9.1. Black-Scholes Option Pricing
- 9.1.1. Portfolio Dynamics in Continuous Time
- 9.1.2. Black-Scholes Model Assumptions
- 9.1.3. The Hedge Portfolio
- 9.1.4. No-Arbitrage Implies a PDE
- 9.1. An Equilibrium Term Structure Model
- 9.2.1. A Bond Risk Premium
- 9.2.2. Characteristics of Bond Prices
- 9.3. Option Pricing with Random Interest Rates
- 9.4. Summary
- 9.5. Exercises
- 10. Arbitrage, Martingales, and Pricing Kernels
- 10.1. Arbitrage and Martingales
- 10.1.1. A Change in Probability: Girsanov's Theorem
- 10.1.2. Money Market Deflator
- 10.1.3. Feynman-Kac Solution
- 10.2. Arbitrage and Pricing Kernels
- 10.2.1. Linking the Valuation Methods
- 10.2.2. The Multivariate Case
- 10.3. Alternative Price Deflators
- 10.4. Applications
- 10.4.1. Continuous Dividends
- 10.4.2. The Term Structure Revisited
- 10.5. Summary
- 10.6. Exercises
- 11. Mixing Diffusion and Jump Processes
- 11.1. Modeling Jumps in Continuous Time
- 11.2. Ito's Lemma for Jump-Diffusion Processes
- 11.3. Valuing Contingent Claims
- 11.3.1. An Imperfect Hedge
- 11.3.2. Diversifiable Jump Risk
- 11.3.3. Lognormal Jump Proportions
- 11.3.4. Nondiversifiable Jump Risk
- 11.3.5. Black-Scholes versus Jump-Diffusion Model
- 11.4. Summary
- 11.5. Exercises
- Part IV. Asset Pricing in Continuous Time
- 12. Continuous-Time Consumption and Portfolio Choice
- 12.1. Model Assumptions
- 12.2. Continuous-Time Dynamic Programming
- 12.3. Solving the Continuous-Time Problem
- 12.3.1. Constant Investment Opportunities
- 12.3.2. Changing Investment Opportunities
- 12.4. The Martingale Approach to Consumption and Portfolio Choice
- 12.4.1. Market Completeness Assumptions
- 12.4.2. The Optimal Consumption Plan
- 12.4.3. The Portfolio Allocation
- 12.4.4. An Example
- 12.5. Summary
- 12.6. Exercises
- 13. Equilibrium Asset Returns
- 13.1. An Intertemporal Capital Asset Pricing Model
- 13.1.1. Constant Investment Opportunities
- 13.1.2. Stochastic Investment Opportunities
- 13.1.3. An Extension to State-Dependent Utility
- 13.2. Breeden's Consumption CAPM
- 13.3. A Cox, Ingersoll, and Ross Production Economy
- 13.3.1. An Example Using Log Utility
- 13.4. Summary
- 13.5. Exercises
- 14. Time-Inseparable Utility
- 14.1. Constantinides' Internal Habit Model
- 14.1.1. Assumptions
- 14.1.2. Consumption and Portfolio Choices
- 14.2. Campbell and Cochrane's External Habit Model
- 14.2.1. Assumptions
- 14.2.2. Equilibrium Asset Prices
- 14.3. Recursive Utility
- 14.3.1. A Model by Obstfeld
- 14.3.2. Discussion of the Model
- 14.4. Summary
- 14.5. Exercises
- Part V. Additional Topics in Asset Pricing
- 15. Behavioral Finance and Asset Pricing
- 15.1. The Effects of Psychological Biases on Asset Prices
- 15.1.1. Assumptions
- 15.1.2. Solving the Model
- 15.1.3. Model Results
- 15.2. The Impact of Irrational Traders on Asset Prices
- 15.2.1. Assumptions
- 15.2.2. Solution Technique
- 15.2.3. Analysis of the Results
- 15.3. Summary
- 15.4. Exercises
- 16. Asset Pricing with Differential Information
- 16.1. Equilibrium with Private Information
- 16.1.1. Grossman Model Assumptions
- 16.1.2. Individuals'Asset Demands
- 16.1.3. A Competitive Equilibrium
- 16.1.4. A Rational Expectations Equilibrium
- 16.1.5. A Noisy Rational Expectations Equilibrium
- 16.2. Asymmetric Information, Trading, and Markets
- 16.2.1. Kyle Model Assumptions
- 16.2.2. Trading and Pricing Strategies
- 16.2.3. Analysis of the Results
- 16.3. Summary
- 16.4. Exercises
- 17. Models of the Term Structure of Interest Rates
- 17.1. Equilibrium Term Structure Models
- 17.1.1. Affine Models
- 17.1.2. Quadratic Gaussian Models
- 17.1.3. Other Equilibrium Models
- 17.2. Valuation Models for Interest Rate Derivatives
- 17.2.1. Heath-Jarrow-Morton Models
- 17.2.2. Market Models
- 17.2.3. Random Field Models
- 17.3. Summary
- 17.4. Exercises
- 18. Models of Default Risk
- 18.1. The Structural Approach
- 18.2. The Reduced-Form Approach
- 18.2.1. A Zero-Recovery Bond
- 18.2.2. Specifying Recovery Values
- 18.2.3. Examples
- 18.3. Summary
- 18.4. Exercises
- References
- Index