Nonlinear dynamics and chaos in semiconductors /

Saved in:
Bibliographic Details
Author / Creator:Aoki, Kazunori.
Imprint:Bristol ; Philadelphia : Institute of Physics Pub., c2001.
Description:xii, 580 p. : ill. ; 25 cm.
Language:English
Series:Series in condensed matter physics
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/6251294
Hidden Bibliographic Details
ISBN:0750305142
Notes:Includes bibliographical references and index.
Table of Contents:
  • Preface
  • 1. Introduction
  • 1.1. What is chaos?
  • 1.1.1. Logistic map
  • 1.1.2. Ergodic theorem
  • 1.1.3. Chaos includes many unstable periodic states
  • 1.1.4. Entropy positive
  • 1.2. Universality and individuality
  • 1.2.1. From universality
  • 1.2.2. Towards individuality
  • 1.3. Motivations
  • 1.3.1. From the viewpoint of semiconductor chaos
  • References
  • 2. Nonlinear carrier transport in semiconductors
  • 2.1. Carrier transport theory
  • 2.1.1. Statistics of carriers
  • 2.1.2. The Boltzmann equation
  • 2.2. Nonequilibrium phase transitions
  • 2.2.1. High-field regime: the Gunn effect
  • 2.2.2. High-field instability and chaos
  • 2.2.3. Low-field regime: the SNDC
  • 2.3. Two-level impact-ionization model
  • References
  • 3. S-shaped negative differential conductivity and the nonequilibrium phase transition
  • 3.1. Scattering processes
  • 3.1.1. Ionized-impurity scattering: Brooks-Herring formula
  • 3.1.2. Ionized impurity scattering in compensated semiconductors
  • 3.1.3. Neutral impurity scattering
  • 3.1.4. Excitations of neutral impurity
  • 3.1.5. Impact ionization
  • 3.2. Impact-ionization model
  • 3.2.1. Approximated one-level impact-ionization model (model A)
  • 3.2.2. One-level impact-ionization model (model B)
  • 3.3. Thermodynamical consideration of the SNDC
  • 3.4. Equal area rule and pattern formation
  • 3.5. Measurement of a localized filamentary current
  • References
  • 4. Nonlinear dynamics, stability and instability in carrier transport
  • 4.1. Catastrophe theory
  • 4.1.1. One-parameter family (m = 1)
  • 4.1.2. Two-parameter family (m = 2)
  • 4.1.3. Four-parameter family (m = 4)
  • 4.2. Breakdown of perfect delay
  • 4.3. Linear stability analysis
  • 4.4. Mathematical version of the instability model: an analog for the impact-ionization avalanche
  • 4.5. A physical model of the impact-ionization avalanche
  • 4.6. Periodically driven chaos
  • 4.7. Period doubling bifurcation to chaos
  • 4.7.1. Sensitive dependence on initial conditions
  • 4.8. Fundamentals of period doubling bifurcation
  • 4.9. Intermittent behavior
  • 4.10. Growth of chaos
  • 4.11. Semiconductor chaos, U-sequence and Sarkovskii's theorem
  • 4.12. Semiconductor chaos and the dissipative structure
  • References
  • 5. Observation of chaos and experimental methods
  • 5.1. Encounter with chaos
  • 5.2. Firing wave instability
  • 5.3. Electron-beam-induced instability
  • 5.4. Periodically driven chaos
  • 5.5. Route to crisis-induced intermittency
  • 5.6. Mechanism of crisis-induced intermittency
  • References
  • 6. Characterizing chaos
  • 6.1. Fractal dimensions and fractal sets
  • 6.1.1. Hausdorff-Besicovitch dimension
  • 6.1.2. Embedding method
  • 6.1.3. Capacity dimension
  • 6.1.4. Information dimension
  • 6.1.5. Lyapunov dimension
  • 6.1.6. Correlation dimension
  • 6.1.7. Relation among the dimensions
  • 6.2. Lyapunov spectrum
  • 6.3. f([alpha]) spectrum
  • 6.4. Circle-map behavior
  • 6.5. Fractal basin boundary
  • References
  • 7. Novel phenomena in semiconductors
  • 7.1. Dissipation energy and its fluctuation
  • 7.2. Deterministic noise amplification
  • 7.3. Hall-field instability
  • 7.3.1. Simulations with positive differential conductivity
  • 7.3.2. Simulations with negative differential conductivity
  • 7.4. Cross-over current instability
  • 7.5. Cross-talk coupling
  • References
  • 8. Towards a second new paradigm of semiconductor chaos
  • 8.1. Towards an understanding of fully developed electronic turbulence
  • 8.1.1. Numerical aspects of pattern dynamics in bulk semiconductors
  • 8.1.2. Dynamical Hall-field instability in crossed electric and magnetic fields
  • 8.1.3. Nucleation process of a current filament
  • 8.1.4. Spatiotemporal behaviors of localized current filaments in silicon p-n-p-n diodes
  • 8.1.5. Experimental aspects of pattern dynamics in bulk semiconductors--part I
  • 8.1.6. Experimental aspects of pattern dynamics in bulk semiconductors--part II
  • 8.2. Towards a second new paradigm
  • 8.3. Chaos in device structures and superlattices
  • 8.3.1. Chaos in electronic devices and circuits
  • 8.3.2. Chaos in device structures
  • References
  • Index