Composite fermions /

Saved in:
Bibliographic Details
Author / Creator:Jain, Jainendra K.
Imprint:Cambridge ; New York : Cambridge University Press, 2007.
Description:xvi, 543 p. : ill. ; 26 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/6377331
Hidden Bibliographic Details
ISBN:9780521862325
0521862329
Notes:Includes bibliographical references and index.
Table of Contents:
  • Preface
  • List of symbols and abbreviations
  • 1. Overview
  • 1.1. Integral quantum Hall effect
  • 1.2. Fractional quantum Hall effect
  • 1.3. Strongly correlated state
  • 1.4. Composite fermions
  • 1.5. Origin of the FQHE
  • 1.6. The composite fermion quantum fluid
  • 1.7. An "ideal" theory
  • 1.8. Miscellaneous remarks
  • 2. Quantum Hall effect
  • 2.1. The Hall effect
  • 2.2. Two-dimensional electron system
  • 2.3. The von Klitzing discovery
  • 2.4. The von Klitzing constant
  • 2.5. The Tsui-Stormer-Gossard discovery
  • 2.6. Role of technology
  • Exercises
  • 3. Landau levels
  • 3.1. Gauge invariance
  • 3.2. Landau gauge
  • 3.3. Symmetric gauge
  • 3.4. Degeneracy
  • 3.5. Filling factor
  • 3.6. Wave functions for filled Landau levels
  • 3.7. Lowest Landau level projection of operators
  • 3.8. Gauge independent treatment
  • 3.9. Magnetic translation operator
  • 3.10. Spherical geometry
  • 3.11. Coulomb matrix elements
  • 3.12. Disk geometry/parabolic quantum dot
  • 3.13. Torus geometry
  • 3.14. Periodic potential: the Hofstadter butterfly
  • 3.15. Tight binding model
  • Exercises
  • 4. Theory of the IQHE
  • 4.1. The puzzle
  • 4.2. The effect of disorder
  • 4.3. Edge states
  • 4.4. Origin of quantized Hall plateaus
  • 4.5. IQHE in a periodic potential
  • 4.6. Two-dimensional Anderson localization in a magnetic field
  • 4.7. Density gradient and R[subscript xx]
  • 4.8. The role of interaction
  • 5. Foundations of the composite fermion theory
  • 5.1. The great FQHE mystery
  • 5.2. The Hamiltonian
  • 5.3. Why the problem is hard
  • 5.4. Condensed matter theory: solid or squalid?
  • 5.5. Laughlin's theory
  • 5.6. The analogy
  • 5.7. Particles of condensed matter
  • 5.8. Composite fermion theory
  • 5.9. Wave functions in the spherical geometry
  • 5.10. Uniform density for incompressible states
  • 5.11. Derivation of v* and B*
  • 5.12. Reality of the effective magnetic field
  • 5.13. Reality of the [Lambda] levels
  • 5.14. Lowest Landau level projection
  • 5.15. Need for other formulations
  • 5.16. Composite fermion Chern-Simons theory
  • 5.17. Other CF based approaches
  • Exercises
  • 6. Microscopic verifications
  • 6.1. Computer experiments
  • 6.2. Relevance to laboratory experiments
  • 6.3. A caveat regarding variational approach
  • 6.4. Qualitative tests
  • 6.5. Quantitative tests
  • 6.6. What computer experiments prove
  • 6.7. Inter-composite fermion interaction
  • 6.8. Disk geometry
  • 6.9. A small parameter and perturbation theory
  • Exercises
  • 7. Theory of the FQHE
  • 7.1. Comparing the IQHE and the FQHE
  • 7.2. Explanation of the FQHE
  • 7.3. Absence of FQHE at v = 1/2
  • 7.4. Interacting composite fermions: new fractions
  • 7.5. FQHE and spin
  • 7.6. FQHE at low fillings
  • 7.7. FQHE in higher Landau levels
  • 7.8. Fractions ad infinitum?
  • Exercises
  • 8. Incompressible ground states and their excitations
  • 8.1. One-particle reduced density matrix
  • 8.2. Pair correlation function
  • 8.3. Static structure factor
  • 8.4. Ground state energy
  • 8.5. CF-quasiparticle and CF-quasihole
  • 8.6. Excitations
  • 8.7. CF masses
  • 8.8. CFCS theory of excitations
  • 8.9. Tunneling into the CF liquid: the electron spectral function
  • Exercises
  • 9. Topology and quantizations
  • 9.1. Charge charge, statistics statistics
  • 9.2. Intrinsic charge and exchange statistics of composite fermions
  • 9.3. Local charge
  • 9.4. Quantized screening
  • 9.5. Fractionally quantized Hall resistance
  • 9.6. Evidence for fractional local charge
  • 9.7. Observations of the fermionic statistics of composite fermions
  • 9.8. Leinaas-Myrheim-Wilczek braiding statistics
  • 9.9. Non-Abelian braiding statistics
  • 9.10. Logical order
  • Exercises
  • 10. Composite fermion Fermi sea
  • 10.1. Geometric resonances
  • 10.2. Thermopower
  • 10.3. Spin polarization of the CF Fermi sea
  • 10.4. Magnetoresistance at v = 1/2
  • 10.5. Compressibility
  • 11. Composite fermions with spin
  • 11.1. Controlling the spin experimentally
  • 11.2. Violation of Hund's first rule
  • 11.3. Mean-field model of composite fermions with a spin
  • 11.4. Microscopic theory
  • 11.5. Comparisons with exact results: resurrecting Hund's first rule
  • 11.6. Phase diagram of the FQHE with spin
  • 11.7. Polarization mass
  • 11.8. Spin-reversed excitations of incompressible states
  • 11.9. Summary
  • 11.10. Skyrmions
  • Exercises
  • 12. Non-composite fermion approaches
  • 12.1. Hierarchy scenario
  • 12.2. Composite boson approach
  • 12.3. Response to Laughlin's critique
  • 12.4. Two-dimensional one-component plasma (2DOCP)
  • 12.5. Charged excitations at v = 1/m
  • 12.6. Neutral excitations: Girvin-MacDonald-Platzman theory
  • 12.7. Conti-Vignale-Tokatly continuum-elasticity theory
  • 12.8. Search for a model interaction
  • Exercises
  • 13. Bilayer FQHE
  • 13.1. Bilayer composite fermion states
  • 13.2. 1/2 FQHE
  • 13.3. v = 1: interlayer phase coherence
  • 13.4. Composite fermion drag
  • 13.5. Spinful composite fermions in bilayers
  • Exercises
  • 14. Edge physics
  • 14.1. QHE edge = 1D system
  • 14.2. Green's function at the IQHE edge
  • 14.3. Bosonization in one dimension
  • 14.4. Wen's conjecture
  • 14.5. Experiment
  • 14.6. Exact diagonalization studies
  • 14.7. Composite fermion theories of the edge
  • Exercises
  • 15. Composite fermion crystals
  • 15.1. Wigner crystal
  • 15.2. Composite fermions at low v
  • 15.3. Composite fermion crystal
  • 15.4. Experimental status
  • 15.5. CF charge density waves
  • Appendixes
  • A. Gaussian integral
  • B. Useful operator identities
  • C. Point flux tube
  • D. Adiabatic insertion of a point flux
  • E. Berry phase
  • F. Second quantization
  • G. Green's functions, spectral function, tunneling
  • H. Off-diagonal long-range order
  • I. Total energies and energy gaps
  • J. Lowest Landau level projection
  • K. Metropolis Monte Carlo
  • L. Composite fermion diagonalization
  • References
  • Index