Handbook of analytical instruments /
Saved in:
Author / Creator: | Khandpur, Raghbir Singh, 1942- |
---|---|
Imprint: | New York : McGraw-Hill, c2007. |
Description: | xxii, 770 p. : ill. ; 25 cm. |
Language: | English |
Series: | McGraw-Hill handbooks |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/6415913 |
Table of Contents:
- Preface
- 1.. Fundamentals of Analytical Instruments
- 1.. Elements of an Analytical Instrument
- 1.2. Sensors and Transducers
- 1.2.1. Classification of Transducers
- 1.2.2. Performance Characteristics of Transducers
- 1.2.3. Smart Sensors
- 1.3. Signal Conditioning in Analytical Instruments
- 1.4. Read-out (Display) Systems
- 1.4.1. Analog Meters
- 1.4.2. Digital Displays
- 1.4.3. Laboratory Recorders
- 1.4.4. The Oscilloscope
- 1.4.5. Video Display Units
- 1.5. Intelligent Analytical Instrumentation Systems
- 1.6. PC-Based Analytical Instruments
- 1.7. Performance Requirements of Analytical Instruments
- 1.7.1. Errors in Chemical Analysis
- 1.7.2. Accuracy and Precision
- 1.7.3. Significant Figures
- 1.7.4. Application of Statistical Methods
- 1.7.5. Signal-to-Noise Ratio
- 1.7.6. Other Performance Parameters
- 1.8. Instrument Calibration Techniques
- 1.8.1. Calibration Curve Method
- 1.8.2. Standard Addition Method
- 1.8.3. Method of Internal Standard
- 1.9. Validation
- 2. Colorimeters and Spectrophotometers (Visible-Ultraviolet)
- 2.1. Electromagnetic Radiation
- 2.1.1. The Electromagnetic Spectrum
- 2.1.2. Interaction of Radiation with Matter
- 2.2. Laws Relating to Absorption of Radiation
- 2.2.1. Lambert's Law
- 2.2.2. Beer's Law
- 2.2.3. The Beer-Lambert Law
- 2.2.4. Deviations from Beer's Law
- 2.2.5. Quantitative Analysis
- 2.2.6. Choice of Wavelength
- 2.2.7. Simultaneous Spectrophotometric Determination
- 2.3. Absorption Instruments
- 2.3.1. Radiation Sources
- 2.3.2. Optical Filters
- 2.3.3. Monochromators
- 2.3.4. Optical Components
- 2.3.5. Photosensitive Detectors
- 2.3.6. Slit Width
- 2.3.7. Sample Holders
- 2.4. Ultraviolet and Visible Absorption Spectroscopy (UV-Vis)
- 2.5. Colorimeters/Photometers
- 2.5.1. Single-beam Filter Photometers
- 2.5.2. Double-beam Filter Photometer
- 2.5.3. Multi-channel Photometer
- 2.5.4. Process Photometers
- 2.6. Spectrophotometers
- 2.6.1. Single-beam Null-type Spectrophotometers
- 2.6.2. Direct Reading Spectrocolorimeters/Spectrophotometers
- 2.6.3. Double-beam Ratio-recording Spectrophotometers
- 2.6.4. Microprocessor-based Spectrophotometers
- 2.6.5. High Performance Spectrophotometers
- 2.6.6. Dual Wavelength Spectrophotometer
- 2.6.7. The Derivative Technique
- 2.7. Sources of Error In Spectrophotometric Measurements
- 2.7.1. Instrument-related Errors
- 2.7.2. Non-instrumental Errors
- 2.8. Calibration
- 3. Infrared Spectrophotometers
- 3.1. Infrared Spectroscopy
- 3.2. Basic Components of Infrared Spectrophotometers
- 3.2.1. Radiation Sources
- 3.2.2. Monochromators
- 3.2.3. Entrance and Exit Slits
- 3.2.4. Mirrors
- 3.2.5. Detectors
- 3.3. Types of Infrared Spectrophotometers
- 3.3.1. Optical Null Method
- 3.3.2. Ratio Recording Method
- 3.4. Sample Handling Techniques
- 3.4.1. Gas Cells
- 3.4.2. Eiquid Cells
- 3.4.3. Variable Path Length Cells
- 3.4.4. Sampling of Solids
- 3.4.5. Micro-sampling
- 3.5. Fourier Transform Infrared Spectroscopy (FTIR)
- 3.5.1. FTIR Spectrophotometers
- 3.6. Calibration
- 3.7. Attenuated Total Reflectance (ATR) Technique
- 4. Flame Photometers
- 4.1. Principle of Flame Photometry
- 4.2. Constructional Details of Flame Photometers
- 4.2.1. Emission System
- 4.2.2. Optical System
- 4.2.3. Photosensitive Detectors
- 4.2.4. Recording System
- 4.3. Types of Flame Photometers
- 4.3.1. Single-beam Instruments
- 4.3.2. Double-beam Instruments
- 4.3.3. Recording Type Flame Photometers
- 4.4. Clinical Flame Photometers
- 4.5. Accessories for Flame Photometer
- 4.6. Expression of Concentration
- 4.7. Interferences in Flame Photometry
- 4.7.1. Flame Background Emission
- 4.7.2. Direct Spectral Interference
- 4.7.3. Self-absorption
- 4.7.4. Effect of Anions
- 4.7.5. Effect of Ionization
- 4.7.6. Solution Characteristics
- 4.8. Procedure For Determinations
- 4.8.1. Calibration Curve Method
- 4.8.2. Standard Addition Method
- 4.8.3. Internal Standard Method
- 5. Atomic Absorption Spectrophotometers
- 5.1. Atomic Absorption Spectroscopy
- 5.2. Atomic Absorption Instrumentation
- 5.2.1. Radiation Sources
- 5.2.2. Burners and Flames
- 5.2.3. Plasma Excitation Sources
- 5.2.4. Graphite Furnace for Atomization
- 5.2.5. Optical System
- 5.2.6. Electronic System
- 5.2.7. Signal Integration
- 5.2.8. Sampling System
- 5.2.9. Performance Aspects
- 5.3. Sources of Interferences
- 5.3.1. Anionic Interference
- 5.3.2. Viscosity Interference
- 5.3.3. Ionization Interference
- 5.3.4. Broadening of the Spectral Line
- 5.4. Meter Scale
- 5.4.1. Curve Correction for Linearization
- 6. Fluorimeters and Phosphorimeters
- 6.1. Fluorescence Spectroscopy
- 6.2. Principle of Fluorescence
- 6.2.1. Relationship between Concentration and Fluorescence Intensity
- 6.2.2. Factors Affecting Fluorescent Yield
- 6.3. Measurement of Fluorescence
- 6.3.1. Single-beam Filter Fluorimeter
- 6.3.2. Double-beam Filter Fluorimeter
- 6.3.3. Ratio Fluorimeters
- 6.4. Spectrofluorimeters
- 6.5. Microprocessor-Based Spectrofluorometer
- 6.5.1. Perkin Elmer Fluorescence Spectrometer Model LS-3
- 6.6. Measurement of Phosphorescence
- 6.6.1. Phosphorescence Spectrometer
- 7. Raman Spectrometer
- 7.1. The Raman Effect
- 7.1.1. Resonance-enhanced Raman Scattering
- 7.1.2. Surface-enhanced Raman Scattering
- 7.2. Raman Spectrometer
- 7.2.1. The Source
- 7.2.2. Sample Chamber
- 7.2.3. The Spectrometer
- 7.2.4. The Detector
- 7.2.5. Computer
- 7.3. PC-based Raman Spectrometer
- 7.4. Infrared and Raman Microspectrometry
- 8. Photoacoustic and Photothermal Spectrometers
- 8.1. Photoacoustic Spectroscopy
- 8.1.1. System Components
- 8.1.2. Typical Photoacoustic Spectrometers
- 8.2. Photothermal Spectroscopy
- 8.2.1. Basic Processes in Photothermal Spectroscopy
- 8.2.2. Photothermal Instrumentation
- 9. Mass Spectrometer
- 9.1. Basic Mass Spectrometer
- 9.2. Principle of Operation
- 9.3. Types of Mass Spectrometers
- 9.3.1. Magnetic Deflection Mass Spectrometer
- 9.3.2. The Time-of-Flight Mass Spectrometer
- 9.3.3. Radiofrequency Mass Spectrometer
- 9.3.4. Quadrupole Mass Spectrometer
- 9.4. Components of a Mass Spectrometer
- 9.4.1. The Inlet Sample System
- 9.4.2. Ion Sources
- 9.4.3. Electrostatic Accelerating System
- 9.4.4. Ion Detectors and Recording of Mass Spectrograph
- 9.4.5. Vacuum System
- 9.5. Inductively Coupled Plasma-Mass Spectrometer
- 9.6. Trapped Ion Mass Analyzers
- 9.7. Ion Cyclotron Resonance (ICR) Mass Spectrometery
- 9.8. Quadrupole Ion Trap Mass Spectrometer
- 9.9. Resolution in Mass Spectrometry
- 9.10. Applications of Mass Spectrometry
- 9.11. Gas Chromatograph-Mass Spectrometer (GC-MS)
- 9.12. Liquid Chromatograph-Mass Spectrometer
- 9.13. Tandem Mass Spectrometry (MS/MS)
- 10. Nuclear Magnetic Resonance Spectrometer
- 10.1. Nuclear Magnetic Resonance Spectroscopy
- 10.2. Principle of NMR
- 20.2.1. Nuclear Spin
- 20.2.2. Nuclear Energy Levels
- 20.5.3. Resonance Conditions
- 10.2.4. NMR Absorption Spectra
- 10.2.5. Relaxation Process
- 10.2.6. The Chemical Shift
- 10.3. Types of NMR Spectrometers
- 10.3.1. Continuous-wave NMR Spectroscopy
- 10.3.2. Fourier Transform NMR Spectroscopy
- 10.4. Constructional Details of NMR Spectrometer
- 20.4.1. Magnetic Field
- 10.4.2. The Radiofrequency Transmitter
- 10.4.3. The Signal Amplifier and Detector
- 10.4.4. The Display System
- 10.4.5. Recording Unit
- 10.4.6. Use of Computers with NMR Spectrometers
- 10.4.7. The Sample Holder
- 10.5. Varian T-60A NMR Spectrometer
- 10.6. Sensitivity Enhancement for Analytical NMR Spectroscopy
- 10.6.1. Optimization of Sample Volume
- 10.6.2. Optimization of Instrumental Parameters
- 10.6.3. Use of Signal Averaging Technique
- 10.6.4. Spin Decoupler
- 10.7. Fourier Transform NMR Spectroscopy
- 11. Electron Spin Resonance Spectrometers
- 11.1. Electron Spin Resonance
- 11.2. Basic ESR Spectrometer
- 11.3. Detailed Description of an ESR Spectrometer
- 22.3.1. The Magnet and the Magnetic Field Controller
- 22.3.2. Microwave Bridge
- 11.3.3. Modulation Unit
- 11.3.4. System Function Selector
- 11.3.5. Recorder
- 11.3.6. Oscilloscope
- 11.3.7. Sample Cavities
- 11.3.8. Sample Cells
- 12. Electron and Ion Spectrometers
- 12.1. Surface Spectroscopic Techniques
- 12.2. Electron Spectroscopy
- 12.2.1. Electron Spectroscopy for Chemical Analysis (ESCA)
- 12.2.2. Auger Electron Spectroscopy (AES)
- 12.3. Instrumentation for Electron Spectroscopy
- 12.3.1. Radiation Sources
- 12.3.2. Energy Analyzers
- 12.3.3. Electron Detectors
- 12.3.4. Read-out System
- 12.3.5. Vacuum Systems
- 12.3.6. Magnetic Shielding
- 12.3.7. Sample Handling
- 12.4. Ion Spectroscopy
- 12.4.1. Instrumentation for Ion Spectroscopy
- 12.5. Scanning Tunnelling Microscopy
- 12.6. Atomic Force Microscopy
- 13. Radiochemical Instruments
- 13.1. Fundamentals of Radiochemical Methods
- 13.1.1. Time Decay of Radioactive Isotopes
- 13.1.2. Units of Radioactivity
- 13.1.3. Types and Properties of Particles Emitted in Radioactive Decay
- 13.1.4. Interaction of Radiations with Matter
- 13.2. Radiation Detectors
- 13.2.1. Ionization Chamber
- 13.2.2. Geiger-Muller Counter
- 13.2.3. Proportional Counter
- 13.2.4. Scintillation Counter
- 13.2.5. Gamma Counters
- 13.2.6. Semiconductor Detectors
- 13.3. Liquid Scintillation Counters
- 13.4. Pulse-Height Analyzer
- 13.5. Gamma Spectrometry
- 14. X-Ray Spectrometers
- 14.1. X-Ray Spectrum
- 14.2. Instrumentation for X-Ray Spectrometry
- 24.2.1. X-Ray Generating Equipment
- 14.2.2. Collimators
- 14.2.3. Monochromators
- 14.2.4. X-Ray Detectors
- 14.3. X-Ray Diffractometers
- 14.4. X-Ray Absorption Meter
- 14.5. X-Ray Fluorescence Spectrometry
- 14.5.1. X-$ay Fluorescent Spectrometer
- 14.5.2. Total Reflection X-Ray Fluorescence Spectrometer
- 14.6. Electron Probe Microanalyzer
- 15. Automated Chemical Analysis Systems
- 15.1. Why Automate?
- 15.1.1. Benefits of Automation in Chemical Analysis
- 15.1.2. Types of Automatic Analysis Techniques
- 15.1.3. Basic Automatic Analysis System
- 15.2. Automated Biochemical Analysis System
- 15.2.1. The System Details
- 15.3. Advanced Versions of Multiple Analysis System
- 15.4. Flow Injection Analysis (FIA) Technique
- 15.5. Lab-on-Chip Technology for Automated Analysis
- 16. Gas Chromatographs
- 16.1. Chromatography
- 16.2. Basic Definitions
- 16.3. Gas Chromatography
- 16.4. Basic Parts of a Gas Chromatograph
- 16.4.1. Carrier Gas Supply or the Mobile Phase
- 16.4.2. Sample Injection System and the Size of the Sample
- 16.4.3. Chromatographic Column
- 16.4.4. Thermal Compartment
- 16.4.5. Detection Systems
- 16.4.6. Recording Instruments
- 16.5. Methods of Measurement of Peak Areas
- 17. Liquid Chromatographs
- 17.1. Liquid Chromatography
- 17.2. Types of Liquid Chromatography
- 17.2.1. Column Chromatography
- 17.2.2. Thin Layer Chromatography
- 17.2.3. Paper Partition Chromatography
- 17.3. High Pressure Liquid Chromatograph (HPLC)
- 17.3.1. High Pressure Pump System
- 17.3.2. Sample Injection System
- 17.3.3. The Column
- 17.3.4. Detection Systems
- 17.3.5. Programmers and Read-Outs
- 17.4. Amino-Acid Analyzers
- 17.4.1. Automatic Amino-acid Analyzer
- 18. Thermo-analytical Instruments
- 18.1. Thermo-analytical Methods
- 18.2. Thermogravimetric Analysis (TGA)
- 18.2.1. Instrumentation
- 18.3. Differential Thermal Analysis (DTA)
- 18.3.1. Instrumentation
- 18.4. Differential Scanning Calorimetry
- 18.5. Simultaneous Thermal Analysis/Mass Spectrometer
- 19. Electrophoresis Apparatus and Densitometers
- 19.1. Electrophoresis
- 19.2. Electrophoresis Techniques
- 19.3. Paper Electrophoresis
- 19.3.1. Methods of Zone Localization
- 19.3.2. Quantitative Considerations
- 19.3.3. Evaluation of the Curves
- 19.4. Electrophoresis Apparatus
- 19.4.1. Electrophoresis Cabinet
- 19.4.2. Regulated Power Supply
- 19.4.3. Densitometer
- 19.5. Spectrodensitometers
- 19.6. Microprocessor-based Densitometer
- 19.7. Capillary Electrophoresis
- 19.8. Micro-Electrophoresis
- 19.9. Steps in the Electrophoresis Procedure Requiring Quality Control
- 20. Electrochemical Instruments
- 20.1. Electrochemical Methods for Analysis
- 20.2. Electrochemical Cell
- 20.2.1. Types of Electrodes
- 20.3. Potentiostats
- 20.4. Types of Electrochemical Methods
- 20.5. Potentiometers
- 20.5.1. Principle of a Potentiometer
- 20.5.2. Zero Current Potentiometry
- 20.5.3. Constant Current Potentiometry
- 20.5.4. Null-point Potentiometry
- 20.5.5. Cyclic Chronopotentiometry
- 20.6. Conductivity Meters
- 20.6.1. Measurement of Conductance
- 20.6.2. Conductivity Cells
- 20.6.3. Temperature Compensation in Conductivity Measurements
- 20.6.4. Conductivity Measurements Using High Frequency Methods
- 20.7. Voltametry
- 20.8. Polarographs
- 20.8.1. Basic Polarographic Instrument
- 20.8.2. Dropping Mercury Electrode
- 20.8.3. Reference Electrode
- 20.8.4. Typical Polarographs
- 20.8.5. Quantitative Aspects of Polarography
- 20.8.6. Types of Polarographs
- 20.9. Coulometers
- 20.10. Amperometers
- 20.11. Aquameters
- 20.12. Microcomputer-controlled Electrochemical Instrumentation
- 21. pH Meters and Ion Analyzers
- 21.1. What is pH ?
- 21.2. Principle of pH Measurement
- 21.3. Electrodes for pH Measurement
- 21.3.1. The Hydrogen Electrode
- 21.3.2. Glass Electrode
- 21.3.3. Calomel Electrode or Reference Electrode
- 21.3.4. Silver/Silver Chloride Reference Electrode
- 21.3.5. Combination Electrode
- 21.3.6. The Asymmetry Potential
- 21.3.7. Buffer Solutions
- 21.3.8. Calibration
- 21.4. A pH Meters
- 21.4.1. Null-Detector Type pH Meters
- 21.4.2. Direct Reading pH Meters
- 21.4.3. Industrial pH Meters
- 21.4.4. Failures in pH Meters
- 21.5. Selective Ion Electrodes
- 21.5.1. Ammonia Electrode
- 21.5.2. Fluoride Electrode
- 21.6. Ion Analyzer
- 21.6.1. PC-based pH Meter Ion-analyzers
- 21.7. Chemically Sensitive Semiconductor Devices
- 21.8. Biosensors
- 22. Blood Gas Analyzers
- 22.1. Acid Base Balance
- 22.2. Blood pH Measurement
- 22.2.1. Electrodes for Blood pH Measurement
- 22.2.2. Effect of Blood on Electrodes
- 22.2.3. Buffer Solutions
- 22.3. Measurement of Blood pCO[subscript 2]
- 22.3.1. Performance Requirements of pH Meters Used for pCO[subscript 2] Measurement
- 22.4. Blood pO[subscript 2] Measurement
- 22.5. A Complete Blood Gas Analyzer
- 22.5.1. Fibre Optic-based Blood Gas Sensors
- 23. Industrial Gas Analyzers
- 23.1. Types of Gas Analyzers
- 23.2. Paramagnetic Oxygen Analyzer
- 23.3. Magnetic Wind Instruments
- 23.4. A The Electrochemical Methods
- 23.4.1. Galvanic Methods
- 23.4.2. Polarographic Cells
- 23.4.3. Conductometric Method
- 23.5. Infrared Gas Analyzers
- 23.6. Thermal Conductivity Analyzers
- 23.7. Analyzers Based on Gas Density
- 23.8. Method Based on Ionization of Gases
- 24. Environmental Pollution Monitoring Instruments
- 24.1. Air Pollution Monitoring Instruments
- 24.1.1. Representation of Gas Concentrations
- 24.1.2. Types and Concentration of Various Gas Pollutants
- 24.1.3. Instrumental Techniques and Measurement Range
- 24.2. Carbon Monoxide
- 24.2.1. Non-dispersive Infrared Analyzer
- 24.2.2. Gas Chromatography
- 24.3. Sulphur Dioxide
- 24.3.1. Colorimetry
- 24.3.2. Conductivitimetry
- 24.3.3. Gas Chromatography
- 24.3.4. Coulometry
- 24.3.5. Flame-photometric Detector
- 24.3.6. Ultraviolet Fluorescence Method
- 24.4. Nitrogen Oxides
- 24.4.1. Colorimetry
- 24.4.2. Chemiluminescence
- 24.4.3. Use of CO Laser
- 24.4.4. Laser Opto-acoustic Spectroscopy
- 24.5. Hydrocarbons
- 24.5.1. Flame Ionization Detector
- 24.5.2. Gas Chromatography
- 24.5.3. Use of Lasers
- 24.6. Ozone
- 24.6.1. Colorimetry
- 24.6.2. Chemiluminescence
- 24.6.3. Absorptiometry
- 24.6.4. Conductivitimetry
- 24.7. Automated Wet-Chemical Air Analysis
- 24.7.1. Total Oxidants
- 24.7.2. Sulphur Dioxide
- 24.8. Water Pollution Monitoring Instruments
- 24.8.1. Types of Pollutants and Techniques
- 25. Electronic Devices and Circuits
- 25.1. Electronic Components
- 25.1.1. Active vs Passive Components
- 25.1.2. Discrete vs Integrated Circuits
- 25.2. Passive Components
- 25.3. Semiconductor Devices
- 25.3.1. P-N Junction
- 25.3.2. Semiconductor Diode
- 25.4. Transistors
- 25.4.1. Bipolar Transistors
- 25.4.2. Field-Effect Transistor
- 25.4.3. MOSFET
- 25.5. Integrated Circuits
- 25.6. Operational Amplifiers
- 25.6.1. Symbolic Representation
- 25.6.2. Power Supply Requirements for Op-Amps
- 25.6.3. Output Voltage Swing
- 25.6.4. Output Current
- 25.6.5. Characteristics of Op-Amps
- 25.6.6. Performance Characteristics of Op-Amps
- 25.6.7. Typical Op-Amp Circuits
- 25.7. Sources of Noise In Electronic Circuits
- 25.7.1. Thermal Noise or Johnson Noise
- 25.7.2. Shot Noise
- 25.7.3. Flicker Noise
- 25.7.4. Environmental Noise
- 25.8. Sources of Noise in Low-Level Measurements
- 25.8.1. Electrostatic and Electromagnetic Coupling to AC Signals
- 25.8.2. Proper Grounding (Common Impedance Coupling)
- 25.9. Noise Reduction Techniques
- 25.9.1. Hardware Techniques
- 25.9.2. Software Techniques
- 26. Digital Circuits
- 26.1. Digital Circuits
- 26.1.1. Binary Number System
- 26.1.2. Truth Tables
- 26.1.3. Logic Circuits
- 26.1.4. Logic Convention
- 26.2. Types of Logic Circuits
- 26.2.1. The And Gate
- 26.2.2. The Or Gate
- 26.2.3. The Invertor (Not) Gate
- 26.2.4. The Nand (Not-And) Gate
- 26.2.5. The Nor Gate
- 26.2.6. The Exclusive-Or (Ex-Or) Gate
- 26.2.7. The Inhibit Gate
- 26.3. Logic Families
- 26.3.1. Transistor-Transistor Logic (TTL)
- 26.3.2. Emitter-Coupled Logic (ECL)
- 26.3.3. CMOS Logic Families
- 26.3.4. Characteristics of Integrated Circuit Logic Gates
- 26.4. Categories of IC's Based on Packing Density
- 26.5. Typical Digital Integrated Circuits
- 26.5.1. Flip-Flops
- 26.5.2. Counters
- 26.5.3. Registers
- 26.5.4. Multiplexer
- 26.5.5. Demultiplexer
- 26.5.6. Encoders
- 26.5.7. Decoders
- 26.5.8. Tri-state Logic
- 26.6. Semiconductor Memories
- 26.6.1. Random Access Memory
- 26.6.2. Read-Only Memory
- 26.7. Microprocessor
- 26.8. Microcontrollers
- 26.9. Data Converters
- 26.9.1. A/D Converters
- 26.9.2. Key Parameters in A/D Converters and their Selection
- 26.10. Data Acquisition Systems for Analytical Instruments
- 27. Computer-Based Analytical Instruments
- 27.1. Computers in Analytical Laboratories
- 27.2. Digital Computer
- 27.2.1. Off-Line/On-Line Computers
- 27.2.2. Types of Digital Computers
- 27.3. Microcomputers
- 27.3.1. Dedicated Microcomputers
- 27.4. Components of a Microcomputer
- 27.4.1. Microcomputer Unit
- 27.4.2. The Video Display Unit
- 27.4.3. Keyboard
- 27.4.4. Controllers
- 27.4.5. Storage Systems for Microcomputers
- 27.4.6. Printers
- 27.4.7. Plotters
- 27.4.8. Modems
- 27.5. Computer Software
- 27.5.1. System Software
- 27.5.2. Application Software
- 27.5.3. Software Creation
- 27.6. Connecting Laboratory Instruments to Computers
- 27.6.1. Types of Interfaces
- 27.6.2. Analog Interfaces
- 27.6.3. Digital I/O Interfaces
- 27.6.4. Serial ASCII Interface
- 27.6.5. IEEE-488 Standard Interface (HPIB, GPIB)
- 27.6.6. LAN Communication Using TCP/IP
- References
- Index