Handbook of analytical instruments /

Saved in:
Bibliographic Details
Author / Creator:Khandpur, Raghbir Singh, 1942-
Imprint:New York : McGraw-Hill, c2007.
Description:xxii, 770 p. : ill. ; 25 cm.
Language:English
Series:McGraw-Hill handbooks
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/6415913
Hidden Bibliographic Details
ISBN:9780071487467
0071487468
Notes:"This book was first published in India in 2006 by Tata McGraw Hill."--T.p. verso.
Includes bibliographical references (p. [739]-747) and index.
Table of Contents:
  • Preface
  • 1.. Fundamentals of Analytical Instruments
  • 1.. Elements of an Analytical Instrument
  • 1.2. Sensors and Transducers
  • 1.2.1. Classification of Transducers
  • 1.2.2. Performance Characteristics of Transducers
  • 1.2.3. Smart Sensors
  • 1.3. Signal Conditioning in Analytical Instruments
  • 1.4. Read-out (Display) Systems
  • 1.4.1. Analog Meters
  • 1.4.2. Digital Displays
  • 1.4.3. Laboratory Recorders
  • 1.4.4. The Oscilloscope
  • 1.4.5. Video Display Units
  • 1.5. Intelligent Analytical Instrumentation Systems
  • 1.6. PC-Based Analytical Instruments
  • 1.7. Performance Requirements of Analytical Instruments
  • 1.7.1. Errors in Chemical Analysis
  • 1.7.2. Accuracy and Precision
  • 1.7.3. Significant Figures
  • 1.7.4. Application of Statistical Methods
  • 1.7.5. Signal-to-Noise Ratio
  • 1.7.6. Other Performance Parameters
  • 1.8. Instrument Calibration Techniques
  • 1.8.1. Calibration Curve Method
  • 1.8.2. Standard Addition Method
  • 1.8.3. Method of Internal Standard
  • 1.9. Validation
  • 2. Colorimeters and Spectrophotometers (Visible-Ultraviolet)
  • 2.1. Electromagnetic Radiation
  • 2.1.1. The Electromagnetic Spectrum
  • 2.1.2. Interaction of Radiation with Matter
  • 2.2. Laws Relating to Absorption of Radiation
  • 2.2.1. Lambert's Law
  • 2.2.2. Beer's Law
  • 2.2.3. The Beer-Lambert Law
  • 2.2.4. Deviations from Beer's Law
  • 2.2.5. Quantitative Analysis
  • 2.2.6. Choice of Wavelength
  • 2.2.7. Simultaneous Spectrophotometric Determination
  • 2.3. Absorption Instruments
  • 2.3.1. Radiation Sources
  • 2.3.2. Optical Filters
  • 2.3.3. Monochromators
  • 2.3.4. Optical Components
  • 2.3.5. Photosensitive Detectors
  • 2.3.6. Slit Width
  • 2.3.7. Sample Holders
  • 2.4. Ultraviolet and Visible Absorption Spectroscopy (UV-Vis)
  • 2.5. Colorimeters/Photometers
  • 2.5.1. Single-beam Filter Photometers
  • 2.5.2. Double-beam Filter Photometer
  • 2.5.3. Multi-channel Photometer
  • 2.5.4. Process Photometers
  • 2.6. Spectrophotometers
  • 2.6.1. Single-beam Null-type Spectrophotometers
  • 2.6.2. Direct Reading Spectrocolorimeters/Spectrophotometers
  • 2.6.3. Double-beam Ratio-recording Spectrophotometers
  • 2.6.4. Microprocessor-based Spectrophotometers
  • 2.6.5. High Performance Spectrophotometers
  • 2.6.6. Dual Wavelength Spectrophotometer
  • 2.6.7. The Derivative Technique
  • 2.7. Sources of Error In Spectrophotometric Measurements
  • 2.7.1. Instrument-related Errors
  • 2.7.2. Non-instrumental Errors
  • 2.8. Calibration
  • 3. Infrared Spectrophotometers
  • 3.1. Infrared Spectroscopy
  • 3.2. Basic Components of Infrared Spectrophotometers
  • 3.2.1. Radiation Sources
  • 3.2.2. Monochromators
  • 3.2.3. Entrance and Exit Slits
  • 3.2.4. Mirrors
  • 3.2.5. Detectors
  • 3.3. Types of Infrared Spectrophotometers
  • 3.3.1. Optical Null Method
  • 3.3.2. Ratio Recording Method
  • 3.4. Sample Handling Techniques
  • 3.4.1. Gas Cells
  • 3.4.2. Eiquid Cells
  • 3.4.3. Variable Path Length Cells
  • 3.4.4. Sampling of Solids
  • 3.4.5. Micro-sampling
  • 3.5. Fourier Transform Infrared Spectroscopy (FTIR)
  • 3.5.1. FTIR Spectrophotometers
  • 3.6. Calibration
  • 3.7. Attenuated Total Reflectance (ATR) Technique
  • 4. Flame Photometers
  • 4.1. Principle of Flame Photometry
  • 4.2. Constructional Details of Flame Photometers
  • 4.2.1. Emission System
  • 4.2.2. Optical System
  • 4.2.3. Photosensitive Detectors
  • 4.2.4. Recording System
  • 4.3. Types of Flame Photometers
  • 4.3.1. Single-beam Instruments
  • 4.3.2. Double-beam Instruments
  • 4.3.3. Recording Type Flame Photometers
  • 4.4. Clinical Flame Photometers
  • 4.5. Accessories for Flame Photometer
  • 4.6. Expression of Concentration
  • 4.7. Interferences in Flame Photometry
  • 4.7.1. Flame Background Emission
  • 4.7.2. Direct Spectral Interference
  • 4.7.3. Self-absorption
  • 4.7.4. Effect of Anions
  • 4.7.5. Effect of Ionization
  • 4.7.6. Solution Characteristics
  • 4.8. Procedure For Determinations
  • 4.8.1. Calibration Curve Method
  • 4.8.2. Standard Addition Method
  • 4.8.3. Internal Standard Method
  • 5. Atomic Absorption Spectrophotometers
  • 5.1. Atomic Absorption Spectroscopy
  • 5.2. Atomic Absorption Instrumentation
  • 5.2.1. Radiation Sources
  • 5.2.2. Burners and Flames
  • 5.2.3. Plasma Excitation Sources
  • 5.2.4. Graphite Furnace for Atomization
  • 5.2.5. Optical System
  • 5.2.6. Electronic System
  • 5.2.7. Signal Integration
  • 5.2.8. Sampling System
  • 5.2.9. Performance Aspects
  • 5.3. Sources of Interferences
  • 5.3.1. Anionic Interference
  • 5.3.2. Viscosity Interference
  • 5.3.3. Ionization Interference
  • 5.3.4. Broadening of the Spectral Line
  • 5.4. Meter Scale
  • 5.4.1. Curve Correction for Linearization
  • 6. Fluorimeters and Phosphorimeters
  • 6.1. Fluorescence Spectroscopy
  • 6.2. Principle of Fluorescence
  • 6.2.1. Relationship between Concentration and Fluorescence Intensity
  • 6.2.2. Factors Affecting Fluorescent Yield
  • 6.3. Measurement of Fluorescence
  • 6.3.1. Single-beam Filter Fluorimeter
  • 6.3.2. Double-beam Filter Fluorimeter
  • 6.3.3. Ratio Fluorimeters
  • 6.4. Spectrofluorimeters
  • 6.5. Microprocessor-Based Spectrofluorometer
  • 6.5.1. Perkin Elmer Fluorescence Spectrometer Model LS-3
  • 6.6. Measurement of Phosphorescence
  • 6.6.1. Phosphorescence Spectrometer
  • 7. Raman Spectrometer
  • 7.1. The Raman Effect
  • 7.1.1. Resonance-enhanced Raman Scattering
  • 7.1.2. Surface-enhanced Raman Scattering
  • 7.2. Raman Spectrometer
  • 7.2.1. The Source
  • 7.2.2. Sample Chamber
  • 7.2.3. The Spectrometer
  • 7.2.4. The Detector
  • 7.2.5. Computer
  • 7.3. PC-based Raman Spectrometer
  • 7.4. Infrared and Raman Microspectrometry
  • 8. Photoacoustic and Photothermal Spectrometers
  • 8.1. Photoacoustic Spectroscopy
  • 8.1.1. System Components
  • 8.1.2. Typical Photoacoustic Spectrometers
  • 8.2. Photothermal Spectroscopy
  • 8.2.1. Basic Processes in Photothermal Spectroscopy
  • 8.2.2. Photothermal Instrumentation
  • 9. Mass Spectrometer
  • 9.1. Basic Mass Spectrometer
  • 9.2. Principle of Operation
  • 9.3. Types of Mass Spectrometers
  • 9.3.1. Magnetic Deflection Mass Spectrometer
  • 9.3.2. The Time-of-Flight Mass Spectrometer
  • 9.3.3. Radiofrequency Mass Spectrometer
  • 9.3.4. Quadrupole Mass Spectrometer
  • 9.4. Components of a Mass Spectrometer
  • 9.4.1. The Inlet Sample System
  • 9.4.2. Ion Sources
  • 9.4.3. Electrostatic Accelerating System
  • 9.4.4. Ion Detectors and Recording of Mass Spectrograph
  • 9.4.5. Vacuum System
  • 9.5. Inductively Coupled Plasma-Mass Spectrometer
  • 9.6. Trapped Ion Mass Analyzers
  • 9.7. Ion Cyclotron Resonance (ICR) Mass Spectrometery
  • 9.8. Quadrupole Ion Trap Mass Spectrometer
  • 9.9. Resolution in Mass Spectrometry
  • 9.10. Applications of Mass Spectrometry
  • 9.11. Gas Chromatograph-Mass Spectrometer (GC-MS)
  • 9.12. Liquid Chromatograph-Mass Spectrometer
  • 9.13. Tandem Mass Spectrometry (MS/MS)
  • 10. Nuclear Magnetic Resonance Spectrometer
  • 10.1. Nuclear Magnetic Resonance Spectroscopy
  • 10.2. Principle of NMR
  • 20.2.1. Nuclear Spin
  • 20.2.2. Nuclear Energy Levels
  • 20.5.3. Resonance Conditions
  • 10.2.4. NMR Absorption Spectra
  • 10.2.5. Relaxation Process
  • 10.2.6. The Chemical Shift
  • 10.3. Types of NMR Spectrometers
  • 10.3.1. Continuous-wave NMR Spectroscopy
  • 10.3.2. Fourier Transform NMR Spectroscopy
  • 10.4. Constructional Details of NMR Spectrometer
  • 20.4.1. Magnetic Field
  • 10.4.2. The Radiofrequency Transmitter
  • 10.4.3. The Signal Amplifier and Detector
  • 10.4.4. The Display System
  • 10.4.5. Recording Unit
  • 10.4.6. Use of Computers with NMR Spectrometers
  • 10.4.7. The Sample Holder
  • 10.5. Varian T-60A NMR Spectrometer
  • 10.6. Sensitivity Enhancement for Analytical NMR Spectroscopy
  • 10.6.1. Optimization of Sample Volume
  • 10.6.2. Optimization of Instrumental Parameters
  • 10.6.3. Use of Signal Averaging Technique
  • 10.6.4. Spin Decoupler
  • 10.7. Fourier Transform NMR Spectroscopy
  • 11. Electron Spin Resonance Spectrometers
  • 11.1. Electron Spin Resonance
  • 11.2. Basic ESR Spectrometer
  • 11.3. Detailed Description of an ESR Spectrometer
  • 22.3.1. The Magnet and the Magnetic Field Controller
  • 22.3.2. Microwave Bridge
  • 11.3.3. Modulation Unit
  • 11.3.4. System Function Selector
  • 11.3.5. Recorder
  • 11.3.6. Oscilloscope
  • 11.3.7. Sample Cavities
  • 11.3.8. Sample Cells
  • 12. Electron and Ion Spectrometers
  • 12.1. Surface Spectroscopic Techniques
  • 12.2. Electron Spectroscopy
  • 12.2.1. Electron Spectroscopy for Chemical Analysis (ESCA)
  • 12.2.2. Auger Electron Spectroscopy (AES)
  • 12.3. Instrumentation for Electron Spectroscopy
  • 12.3.1. Radiation Sources
  • 12.3.2. Energy Analyzers
  • 12.3.3. Electron Detectors
  • 12.3.4. Read-out System
  • 12.3.5. Vacuum Systems
  • 12.3.6. Magnetic Shielding
  • 12.3.7. Sample Handling
  • 12.4. Ion Spectroscopy
  • 12.4.1. Instrumentation for Ion Spectroscopy
  • 12.5. Scanning Tunnelling Microscopy
  • 12.6. Atomic Force Microscopy
  • 13. Radiochemical Instruments
  • 13.1. Fundamentals of Radiochemical Methods
  • 13.1.1. Time Decay of Radioactive Isotopes
  • 13.1.2. Units of Radioactivity
  • 13.1.3. Types and Properties of Particles Emitted in Radioactive Decay
  • 13.1.4. Interaction of Radiations with Matter
  • 13.2. Radiation Detectors
  • 13.2.1. Ionization Chamber
  • 13.2.2. Geiger-Muller Counter
  • 13.2.3. Proportional Counter
  • 13.2.4. Scintillation Counter
  • 13.2.5. Gamma Counters
  • 13.2.6. Semiconductor Detectors
  • 13.3. Liquid Scintillation Counters
  • 13.4. Pulse-Height Analyzer
  • 13.5. Gamma Spectrometry
  • 14. X-Ray Spectrometers
  • 14.1. X-Ray Spectrum
  • 14.2. Instrumentation for X-Ray Spectrometry
  • 24.2.1. X-Ray Generating Equipment
  • 14.2.2. Collimators
  • 14.2.3. Monochromators
  • 14.2.4. X-Ray Detectors
  • 14.3. X-Ray Diffractometers
  • 14.4. X-Ray Absorption Meter
  • 14.5. X-Ray Fluorescence Spectrometry
  • 14.5.1. X-$ay Fluorescent Spectrometer
  • 14.5.2. Total Reflection X-Ray Fluorescence Spectrometer
  • 14.6. Electron Probe Microanalyzer
  • 15. Automated Chemical Analysis Systems
  • 15.1. Why Automate?
  • 15.1.1. Benefits of Automation in Chemical Analysis
  • 15.1.2. Types of Automatic Analysis Techniques
  • 15.1.3. Basic Automatic Analysis System
  • 15.2. Automated Biochemical Analysis System
  • 15.2.1. The System Details
  • 15.3. Advanced Versions of Multiple Analysis System
  • 15.4. Flow Injection Analysis (FIA) Technique
  • 15.5. Lab-on-Chip Technology for Automated Analysis
  • 16. Gas Chromatographs
  • 16.1. Chromatography
  • 16.2. Basic Definitions
  • 16.3. Gas Chromatography
  • 16.4. Basic Parts of a Gas Chromatograph
  • 16.4.1. Carrier Gas Supply or the Mobile Phase
  • 16.4.2. Sample Injection System and the Size of the Sample
  • 16.4.3. Chromatographic Column
  • 16.4.4. Thermal Compartment
  • 16.4.5. Detection Systems
  • 16.4.6. Recording Instruments
  • 16.5. Methods of Measurement of Peak Areas
  • 17. Liquid Chromatographs
  • 17.1. Liquid Chromatography
  • 17.2. Types of Liquid Chromatography
  • 17.2.1. Column Chromatography
  • 17.2.2. Thin Layer Chromatography
  • 17.2.3. Paper Partition Chromatography
  • 17.3. High Pressure Liquid Chromatograph (HPLC)
  • 17.3.1. High Pressure Pump System
  • 17.3.2. Sample Injection System
  • 17.3.3. The Column
  • 17.3.4. Detection Systems
  • 17.3.5. Programmers and Read-Outs
  • 17.4. Amino-Acid Analyzers
  • 17.4.1. Automatic Amino-acid Analyzer
  • 18. Thermo-analytical Instruments
  • 18.1. Thermo-analytical Methods
  • 18.2. Thermogravimetric Analysis (TGA)
  • 18.2.1. Instrumentation
  • 18.3. Differential Thermal Analysis (DTA)
  • 18.3.1. Instrumentation
  • 18.4. Differential Scanning Calorimetry
  • 18.5. Simultaneous Thermal Analysis/Mass Spectrometer
  • 19. Electrophoresis Apparatus and Densitometers
  • 19.1. Electrophoresis
  • 19.2. Electrophoresis Techniques
  • 19.3. Paper Electrophoresis
  • 19.3.1. Methods of Zone Localization
  • 19.3.2. Quantitative Considerations
  • 19.3.3. Evaluation of the Curves
  • 19.4. Electrophoresis Apparatus
  • 19.4.1. Electrophoresis Cabinet
  • 19.4.2. Regulated Power Supply
  • 19.4.3. Densitometer
  • 19.5. Spectrodensitometers
  • 19.6. Microprocessor-based Densitometer
  • 19.7. Capillary Electrophoresis
  • 19.8. Micro-Electrophoresis
  • 19.9. Steps in the Electrophoresis Procedure Requiring Quality Control
  • 20. Electrochemical Instruments
  • 20.1. Electrochemical Methods for Analysis
  • 20.2. Electrochemical Cell
  • 20.2.1. Types of Electrodes
  • 20.3. Potentiostats
  • 20.4. Types of Electrochemical Methods
  • 20.5. Potentiometers
  • 20.5.1. Principle of a Potentiometer
  • 20.5.2. Zero Current Potentiometry
  • 20.5.3. Constant Current Potentiometry
  • 20.5.4. Null-point Potentiometry
  • 20.5.5. Cyclic Chronopotentiometry
  • 20.6. Conductivity Meters
  • 20.6.1. Measurement of Conductance
  • 20.6.2. Conductivity Cells
  • 20.6.3. Temperature Compensation in Conductivity Measurements
  • 20.6.4. Conductivity Measurements Using High Frequency Methods
  • 20.7. Voltametry
  • 20.8. Polarographs
  • 20.8.1. Basic Polarographic Instrument
  • 20.8.2. Dropping Mercury Electrode
  • 20.8.3. Reference Electrode
  • 20.8.4. Typical Polarographs
  • 20.8.5. Quantitative Aspects of Polarography
  • 20.8.6. Types of Polarographs
  • 20.9. Coulometers
  • 20.10. Amperometers
  • 20.11. Aquameters
  • 20.12. Microcomputer-controlled Electrochemical Instrumentation
  • 21. pH Meters and Ion Analyzers
  • 21.1. What is pH ?
  • 21.2. Principle of pH Measurement
  • 21.3. Electrodes for pH Measurement
  • 21.3.1. The Hydrogen Electrode
  • 21.3.2. Glass Electrode
  • 21.3.3. Calomel Electrode or Reference Electrode
  • 21.3.4. Silver/Silver Chloride Reference Electrode
  • 21.3.5. Combination Electrode
  • 21.3.6. The Asymmetry Potential
  • 21.3.7. Buffer Solutions
  • 21.3.8. Calibration
  • 21.4. A pH Meters
  • 21.4.1. Null-Detector Type pH Meters
  • 21.4.2. Direct Reading pH Meters
  • 21.4.3. Industrial pH Meters
  • 21.4.4. Failures in pH Meters
  • 21.5. Selective Ion Electrodes
  • 21.5.1. Ammonia Electrode
  • 21.5.2. Fluoride Electrode
  • 21.6. Ion Analyzer
  • 21.6.1. PC-based pH Meter Ion-analyzers
  • 21.7. Chemically Sensitive Semiconductor Devices
  • 21.8. Biosensors
  • 22. Blood Gas Analyzers
  • 22.1. Acid Base Balance
  • 22.2. Blood pH Measurement
  • 22.2.1. Electrodes for Blood pH Measurement
  • 22.2.2. Effect of Blood on Electrodes
  • 22.2.3. Buffer Solutions
  • 22.3. Measurement of Blood pCO[subscript 2]
  • 22.3.1. Performance Requirements of pH Meters Used for pCO[subscript 2] Measurement
  • 22.4. Blood pO[subscript 2] Measurement
  • 22.5. A Complete Blood Gas Analyzer
  • 22.5.1. Fibre Optic-based Blood Gas Sensors
  • 23. Industrial Gas Analyzers
  • 23.1. Types of Gas Analyzers
  • 23.2. Paramagnetic Oxygen Analyzer
  • 23.3. Magnetic Wind Instruments
  • 23.4. A The Electrochemical Methods
  • 23.4.1. Galvanic Methods
  • 23.4.2. Polarographic Cells
  • 23.4.3. Conductometric Method
  • 23.5. Infrared Gas Analyzers
  • 23.6. Thermal Conductivity Analyzers
  • 23.7. Analyzers Based on Gas Density
  • 23.8. Method Based on Ionization of Gases
  • 24. Environmental Pollution Monitoring Instruments
  • 24.1. Air Pollution Monitoring Instruments
  • 24.1.1. Representation of Gas Concentrations
  • 24.1.2. Types and Concentration of Various Gas Pollutants
  • 24.1.3. Instrumental Techniques and Measurement Range
  • 24.2. Carbon Monoxide
  • 24.2.1. Non-dispersive Infrared Analyzer
  • 24.2.2. Gas Chromatography
  • 24.3. Sulphur Dioxide
  • 24.3.1. Colorimetry
  • 24.3.2. Conductivitimetry
  • 24.3.3. Gas Chromatography
  • 24.3.4. Coulometry
  • 24.3.5. Flame-photometric Detector
  • 24.3.6. Ultraviolet Fluorescence Method
  • 24.4. Nitrogen Oxides
  • 24.4.1. Colorimetry
  • 24.4.2. Chemiluminescence
  • 24.4.3. Use of CO Laser
  • 24.4.4. Laser Opto-acoustic Spectroscopy
  • 24.5. Hydrocarbons
  • 24.5.1. Flame Ionization Detector
  • 24.5.2. Gas Chromatography
  • 24.5.3. Use of Lasers
  • 24.6. Ozone
  • 24.6.1. Colorimetry
  • 24.6.2. Chemiluminescence
  • 24.6.3. Absorptiometry
  • 24.6.4. Conductivitimetry
  • 24.7. Automated Wet-Chemical Air Analysis
  • 24.7.1. Total Oxidants
  • 24.7.2. Sulphur Dioxide
  • 24.8. Water Pollution Monitoring Instruments
  • 24.8.1. Types of Pollutants and Techniques
  • 25. Electronic Devices and Circuits
  • 25.1. Electronic Components
  • 25.1.1. Active vs Passive Components
  • 25.1.2. Discrete vs Integrated Circuits
  • 25.2. Passive Components
  • 25.3. Semiconductor Devices
  • 25.3.1. P-N Junction
  • 25.3.2. Semiconductor Diode
  • 25.4. Transistors
  • 25.4.1. Bipolar Transistors
  • 25.4.2. Field-Effect Transistor
  • 25.4.3. MOSFET
  • 25.5. Integrated Circuits
  • 25.6. Operational Amplifiers
  • 25.6.1. Symbolic Representation
  • 25.6.2. Power Supply Requirements for Op-Amps
  • 25.6.3. Output Voltage Swing
  • 25.6.4. Output Current
  • 25.6.5. Characteristics of Op-Amps
  • 25.6.6. Performance Characteristics of Op-Amps
  • 25.6.7. Typical Op-Amp Circuits
  • 25.7. Sources of Noise In Electronic Circuits
  • 25.7.1. Thermal Noise or Johnson Noise
  • 25.7.2. Shot Noise
  • 25.7.3. Flicker Noise
  • 25.7.4. Environmental Noise
  • 25.8. Sources of Noise in Low-Level Measurements
  • 25.8.1. Electrostatic and Electromagnetic Coupling to AC Signals
  • 25.8.2. Proper Grounding (Common Impedance Coupling)
  • 25.9. Noise Reduction Techniques
  • 25.9.1. Hardware Techniques
  • 25.9.2. Software Techniques
  • 26. Digital Circuits
  • 26.1. Digital Circuits
  • 26.1.1. Binary Number System
  • 26.1.2. Truth Tables
  • 26.1.3. Logic Circuits
  • 26.1.4. Logic Convention
  • 26.2. Types of Logic Circuits
  • 26.2.1. The And Gate
  • 26.2.2. The Or Gate
  • 26.2.3. The Invertor (Not) Gate
  • 26.2.4. The Nand (Not-And) Gate
  • 26.2.5. The Nor Gate
  • 26.2.6. The Exclusive-Or (Ex-Or) Gate
  • 26.2.7. The Inhibit Gate
  • 26.3. Logic Families
  • 26.3.1. Transistor-Transistor Logic (TTL)
  • 26.3.2. Emitter-Coupled Logic (ECL)
  • 26.3.3. CMOS Logic Families
  • 26.3.4. Characteristics of Integrated Circuit Logic Gates
  • 26.4. Categories of IC's Based on Packing Density
  • 26.5. Typical Digital Integrated Circuits
  • 26.5.1. Flip-Flops
  • 26.5.2. Counters
  • 26.5.3. Registers
  • 26.5.4. Multiplexer
  • 26.5.5. Demultiplexer
  • 26.5.6. Encoders
  • 26.5.7. Decoders
  • 26.5.8. Tri-state Logic
  • 26.6. Semiconductor Memories
  • 26.6.1. Random Access Memory
  • 26.6.2. Read-Only Memory
  • 26.7. Microprocessor
  • 26.8. Microcontrollers
  • 26.9. Data Converters
  • 26.9.1. A/D Converters
  • 26.9.2. Key Parameters in A/D Converters and their Selection
  • 26.10. Data Acquisition Systems for Analytical Instruments
  • 27. Computer-Based Analytical Instruments
  • 27.1. Computers in Analytical Laboratories
  • 27.2. Digital Computer
  • 27.2.1. Off-Line/On-Line Computers
  • 27.2.2. Types of Digital Computers
  • 27.3. Microcomputers
  • 27.3.1. Dedicated Microcomputers
  • 27.4. Components of a Microcomputer
  • 27.4.1. Microcomputer Unit
  • 27.4.2. The Video Display Unit
  • 27.4.3. Keyboard
  • 27.4.4. Controllers
  • 27.4.5. Storage Systems for Microcomputers
  • 27.4.6. Printers
  • 27.4.7. Plotters
  • 27.4.8. Modems
  • 27.5. Computer Software
  • 27.5.1. System Software
  • 27.5.2. Application Software
  • 27.5.3. Software Creation
  • 27.6. Connecting Laboratory Instruments to Computers
  • 27.6.1. Types of Interfaces
  • 27.6.2. Analog Interfaces
  • 27.6.3. Digital I/O Interfaces
  • 27.6.4. Serial ASCII Interface
  • 27.6.5. IEEE-488 Standard Interface (HPIB, GPIB)
  • 27.6.6. LAN Communication Using TCP/IP
  • References
  • Index