Biology in space and life on earth : effects of spaceflight on biological systems /

Saved in:
Bibliographic Details
Imprint:Weinheim : Wiley-VCH, c2007.
Description:xvii, 277 p. : ill. ; 25 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/6644314
Hidden Bibliographic Details
Other authors / contributors:Brinckmann, Enno.
ISBN:9783527406685 (alk. paper)
3527406689 (alk. paper)
Notes:Includes bibliographical references and index.
Publisher's no.:1140668 000
Table of Contents:
  • Foreword
  • Preface
  • List of Contributors
  • Introduction
  • 1. Flight Mission Scenarios
  • 2. Sounding Rocket Experiments
  • 3. Biobox on Foton and in the Space Shuttle
  • 3.1. Biobox-1
  • 3.2. Biobox-2
  • 3.3. Biobox-3
  • 3.4. Biobox-4
  • 4. Biorack in Spacelab and Spacehab
  • 1. The Gravity Environment in Space Experiments
  • 1.1. Introduction to Gravity Research
  • 1.1.1. Principle of Equivalence
  • 1.1.2. Microgravity
  • 1.1.3. Artifi cial Gravity
  • 1.2. Gravity Phenomena on Small Objects
  • 1.2.1. Sedimentation
  • 1.2.2. Hydrostatic Pressure
  • 1.2.3. Diffusion
  • 1.2.4. Convection
  • 1.2.5. Diffusion/Convection
  • 1.2.6. Buoyancy
  • 1.2.7. Coriolis Acceleration
  • 2. Primary Responses of Gravity Sensing in Plants
  • 2.1. Introduction and Historical Background
  • 2.2. Evolution of Gravity Sensing Mechanisms under the Earth's Gravity Conditions
  • 2.3. Specifi c Location and Unique Features of Gravity Sensing Cells
  • 2.4. Correlation between Statolith Sedimentation and Gravitropic Responses
  • 2.5. Is the Actin Cytoskeleton Involved in Gravity Sensing?
  • 2.6. Gravireceptors
  • 2.7. Second Messengers in Gravisignalling
  • 2.8. Modifying Gravitational Acceleration Forces - Versatile Tools for Studying Plant Gravity Sensing Mechanisms
  • 2.9. Conclusions and Perspectives
  • 3. Physiological Responses of Higher Plants
  • 3.1. Introduction: Historical Overview
  • 3.2. Terminological Aspects
  • 3.3. Microgravity as a Tool
  • 3.3.1. Equipment
  • 3.3.2. Testable Hypotheses
  • 3.4. Microgravity as Stress Factor
  • 3.4.1. Cellular Level
  • 3.4.2. Developmental Aspects
  • 3.5. Gravity-related Paradoxes
  • 3.6. Gravity and Evolution
  • 3.7. Conclusion and Perspectives
  • 4. Development and Gravitropism of Lentil Seedling Roots Grown in Microgravity
  • 4.1. Introduction
  • 4.1.1. Development of Lentil Seedlings on the Ground
  • 4.1.2. Root Gravitropism on Earth
  • 4.2. Basic Hardware Used to Perform Space Experiments
  • 4.2.1. Plant Growth Chambers: The Minicontainers
  • 4.2.2. The Glutaraldehyde Fixer
  • 4.3. Development in Space
  • 4.3.1. Root Orientation in Microgravity
  • 4.3.2. Root Growth
  • 4.3.3. Cell Elongation
  • 4.3.4. Meristematic Activity
  • 4.4. Root Gravitropism in Space
  • 4.4.1. Organelle Distribution within the Statocyte
  • 4.4.2. Gravisensitivity
  • 4.4.3. Gravitropic Response
  • 4.5. Conclusion
  • 4.5.1. Action of Microgravity on Root Growth
  • 4.5.2. Gravisensing Cells and Perception of Gravity by Roots
  • 5. Biology of Adherent Cells in Microgravity
  • 5.1. Why Cell Biology Research in Microgravity?
  • 5.2. Medical Disturbances in Astronauts
  • 5.2.1. Similarity to Diseases on Earth
  • 5.2.2. Cell Types Potentially Involved
  • 5.3. Mechano-receptivity and -reactivity of Adherent Cells in Culture
  • 5.3.1. Mechano-transduction at the Cell-Matrix Contacts
  • 5.3.2. Mechano-transduction at the Cell-Cell Contacts
  • 5.3.3. The Cytoskeleton Network and its Control by the Small RhoGTPases
  • 5.3.4. Cells React to Mechanical Stress and Relaxation
  • 5.4. Microgravity, the Loss of a Force, Leading to Cellular Disturbances
  • 5.4.1. Biological View of the Biophysical Concepts
  • 5.4.2. Short Time Microgravity and Space Flights
  • 5.4.3. Modelled Altered Gravity
  • 5.5. From Ground Research to Investigations in Microgravity
  • 5.5.1. Testable Hypotheses
  • 5.5.2. Experimental Strategy and Constraints
  • 5.5.3. The Future
  • 6. Microgravity and Bone Cell Mec