Mixed hodge structures /

Saved in:
Bibliographic Details
Author / Creator:Peters, C. (Chris)
Imprint:Berlin : Springer, c2008.
Description:xiii, 470 p. : ill. ; 24 cm.
Language:English
Series:Ergebnisse der Mathematik und ihrer Grenzgebiete = Series of modern surveys in mathematics ; 3. Folge, Bd. 52
Ergebnisse der Mathematik und ihrer Grenzgebiete ; 3. Folge, Bd. 52.
Subject:
Format: E-Resource Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/6825821
Hidden Bibliographic Details
Other authors / contributors:Steenbrink, J. H. M.
ISBN:3540770151
9783540770152
Notes:Includes bibliographical references (p. [445]-456) and indexes.
Table of Contents:
  • Introduction
  • Part I. Basic Hodge Theory
  • 1. Compact Kahler Manifolds
  • 1.1. Classical Hodge Theory
  • 1.1.1. Harmonic Theory
  • 1.1.2. The Hodge Decomposition
  • 1.1.3. Hodge Structures in Cohomology and Homology
  • 1.2. The Lefschetz Decomposition
  • 1.2.1. Representation Theory of SL(2, R)
  • 1.2.2. Primitive Cohomology
  • 1.3. Applications
  • 2. Pure Hodge Structures
  • 2.1. Hodge Structures
  • 2.1.1. Basic Definitions
  • 2.1.2. Polarized Hodge Structures
  • 2.2. Mumford-Tate Groups of Hodge Structures
  • 2.3. Hodge Filtration and Hodge Complexes
  • 2.3.1. Hodge to De Rham Spectral Sequence
  • 2.3.2. Strong Hodge Decompositions
  • 2.3.3. Hodge Complexes and Hodge Complexes of Sheaves
  • 2.4. Refined Fundamental Classes
  • 2.5. Almost Kahler V-Manifolds
  • 3. Abstract Aspects of Mixed Hodge Structures
  • 3.1. Introduction to Mixed Hodge Structures: Formal Aspects
  • 3.2. Comparison of Filtrations
  • 3.3. Mixed Hodge Structures and Mixed Hodge Complexes
  • 3.4. The Mixed Cone
  • 3.5. Extensions of Mixed Hodge Structures
  • 3.5.1. Mixed Hodge Extensions
  • 3.5.2. Iterated Extensions and Absolute Hodge Cohomology
  • Part II. Mixed Hodge structures on Cohomology Groups
  • 4. Smooth Varieties
  • 4.1. Main Result
  • 4.2. Residue Maps
  • 4.3. Associated Mixed Hodge Complexes of Sheaves
  • 4.4. Logarithmic Structures
  • 4.5. Independence of the Compactification and Further Complements
  • 4.5.1. Invariance
  • 4.5.2. Restrictions for the Hodge Numbers
  • 4.5.3. Theorem of the Fixed Part and Applications
  • 4.5.4. Application to Lefschetz Pencils
  • 5. Singular Varieties
  • 5.1. Simplicial and Cubical Sets
  • 5.1.1. Basic Definitions
  • 5.1.2. Sheaves on Semi-simplicial Spaces and Their Cohomology
  • 5.1.3. Cohomological Descent and Resolutions
  • 5.2. Construction of Cubical Hyperresolutions
  • 5.3. Mixed Hodge Theory for Singular Varieties
  • 5.3.1. The Basic Construction
  • 5.3.2. Mixed Hodge Theory of Proper Modifications
  • 5.3.3. Restriction on the Hodge Numbers
  • 5.4. Cup Product and the Kunneth Formula
  • 5.5. Relative Cohomology
  • 5.5.1. Construction of the Mixed Hodge Structure
  • 5.5.2. Cohomology with Compact Support
  • 6. Singular Varieties: Complementary Results
  • 6.1. The Leray Filtration
  • 6.2. Deleted Neighbourhoods of Algebraic Sets
  • 6.2.1. Mixed Hodge Complexes
  • 6.2.2. Products and Deleted Neighbourhoods
  • 6.2.3. Semi-purity of the Link
  • 6.3. Cup and Cap Products, and Duality
  • 6.3.1. Duality for Cohomology with Compact Supports
  • 6.3.2. The Extra-Ordinary Cup Product
  • 7. Applications to Algebraic Cycles and to Singularities
  • 7.1. The Hodge Conjectures
  • 7.1.1. Versions for Smooth Projective Varieties
  • 7.1.2. The Hodge Conjecture and the Intermediate Jacobian
  • 7.1.3. A Version for Singular Varieties
  • 7.2. Deligne Cohomology
  • 7.2.1. Basic Properties
  • 7.2.2. Cycle Classes for Deligne Cohomology
  • 7.3. The Filtered De Rham Complex And Applications
  • 7.3.1. The Filtered De Rham Complex
  • 7.3.2. Application to Vanishing Theorems
  • 7.3.3. Applications to Du Bois Singularities
  • Part III. Mixed Hodge Structures on Homotopy Groups
  • 8. Hodge Theory and Iterated Integrals
  • 8.1. Some Basic Results from Homotopy Theory
  • 8.2. Formulation of the Main Results
  • 8.3. Loop Space Cohomology and the Homotopy De Rham Theorem
  • 8.3.1. Iterated Integrals
  • 8.3.2. Chen's Version of the De Rham Theorem
  • 8.3.3. The Bar Construction
  • 8.3.4. Iterated Integrals of 1-Forms
  • 8.4. The Homotopy De Rham Theorem for the Fundamental Group
  • 8.5. Mixed Hodge Structure on the Fundamental Group
  • 8.6. The Sullivan Construction
  • 8.7. Mixed Hodge Structures on the Higher Homotopy Groups
  • 9. Hodge Theory and Minimal Models
  • 9.1. Minimal Models of Differential Graded Algebras
  • 9.2. Postnikov Towers and Minimal Models; the Simply Connected Case
  • 9.3. Mixed Hodge Structures on the Minimal Model
  • 9.4. Formality of Compact Kahler Manifolds
  • 9.4.1. The 1-Minimal Model
  • 9.4.2. The De Rham Fundamental Group
  • 9.4.3. Formality
  • Part IV. Hodge Structures and Local Systems
  • 10. Variations of Hodge Structure
  • 10.1. Preliminaries: Local Systems over Complex Manifolds
  • 10.2. Abstract Variations of Hodge Structure
  • 10.3. Big Monodromy Groups, an Application
  • 10.4. Variations of Hodge Structures Coming From Smooth Families
  • 11. Degenerations of Hodge Structures
  • 11.1. Local Systems Acquiring Singularities
  • 11.1.1. Connections with Logarithmic Poles
  • 11.1.2. The Riemann-Hilbert Correspondence (I)
  • 11.2. The Limit Mixed Hodge Structure on Nearby Cycle Spaces
  • 11.2.1. Asymptotics for Variations of Hodge Structure over a Punctured Disk
  • 11.2.2. Geometric Set-Up and Preliminary Reductions
  • 11.2.3. The Nearby and Vanishing Cycle Functor
  • 11.2.4. The Relative Logarithmic de Rham Complex and Quasi-unipotency of the Monodromy
  • 11.2.5. The Complex Monodromy Weight Filtration and the Hodge Filtration
  • 11.2.6. The Rational Structure
  • 11.2.7. The Mixed Hodge Structure on the Limit
  • 11.3. Geometric Consequences for Degenerations
  • 11.3.1. Monodromy, Specialization and Wang Sequence
  • 11.3.2. The Monodromy and Local Invariant Cycle Theorems
  • 11.4. Examples
  • 12. Applications of Asymptotic Hodge theory
  • 12.1. Applications to Singularities
  • 12.1.1. Localizing Nearby Cycles
  • 12.1.2. A Mixed Hodge Structure on the Cohomology of Milnor Fibres
  • 12.1.3. The Spectrum of Singularities
  • 12.2. An Application to Cycles: Grothendieck's Induction Principle
  • 13. Perverse Sheaves and D-Modules
  • 13.1. Verdier Duality
  • 13.1.1. Dimension
  • 13.1.2. The Dualizing Complex
  • 13.1.3. Statement of Verdier Duality
  • 13.1.4. Extraordinary Pull Back
  • 13.2. Perverse Complexes
  • 13.2.1. Intersection Homology and Cohomology
  • 13.2.2. Constructible and Perverse Complexes
  • 13.2.3. An Example: Nearby and Vanishing Cycles
  • 13.3. Introduction to D-Modules
  • 13.3.1. Integrable Connections and D-Modules
  • 13.3.2. From Left to Right and Vice Versa
  • 13.3.3. Derived Categories of D-modules
  • 13.3.4. Inverse and Direct Images
  • 13.3.5. An Example: the Gauss-Manin System
  • 13.4. Coherent D-Modules
  • 13.4.1. Basic Definitions
  • 13.4.2. Good Filtrations and Characteristic Varieties
  • 13.4.3. Behaviour under Direct and Inverse Images
  • 13.5. Filtered D-modules
  • 13.5.1. Derived Categories
  • 13.5.2. Duality
  • 13.5.3. Functoriality
  • 13.6. Holonomic D-Modules
  • 13.6.1. Symplectic Geometry
  • 13.6.2. Basics on Holonomic D-Modules
  • 13.6.3. The Riemann-Hilbert Correspondence (II)
  • 14. Mixed Hodge Modules
  • 14.1. An Axiomatic Introduction
  • 14.1.1. The Axioms
  • 14.1.2. First Consequences of the Axioms
  • 14.1.3. Spectral Sequences
  • 14.1.4. Intersection Cohomology
  • 14.1.5. Refined Fundamental Classes
  • 14.2. The Kashiwara-Malgrange Filtration
  • 14.2.1. Motivation
  • 14.2.2. The Rational V-Filtration
  • 14.3. Polarizable Hodge Modules
  • 14.3.1. Hodge Modules
  • 14.3.2. Polarizations
  • 14.3.3. Lefschetz Operators and the Decomposition Theorem
  • 14.4. Mixed Hodge Modules
  • 14.4.1. Variations of Mixed Hodge Structure
  • 14.4.2. Defining Mixed Hodge Modules
  • 14.4.3. About the Axioms
  • 14.4.4. Application: Vanishing Theorems
  • 14.4.5. The Motivic Hodge Character and Motivic Chern Classes
  • Part V. Appendices
  • A. Homological Algebra
  • A.1. Additive and Abelian Categories
  • A.1.1. Pre-Abelian Categories
  • A.1.2. Additive Categories
  • A.2. Derived Categories
  • A.2.1. The Homotopy Category
  • A.2.2. The Derived Category
  • A.2.3. Injective and Projective Resolutions
  • A.2.4. Derived Functors
  • A.2.5. Properties of the Ext-functor
  • A.2.6. Yoneda Extensions
  • A.3. Spectral Sequences and Filtrations
  • A.3.1. Filtrations
  • A.3.2. Spectral Sequences and Exact Couples
  • A.3.3. Filtrations Induce Spectral Sequences
  • A.3.4. Derived Functors and Spectral Sequences
  • B. Algebraic and Differential Topology
  • B.1. Singular (Co)homology and Borel-Moore Homology
  • B.1.1. Basic Definitions and Tools
  • B.1.2. Pairings and Products
  • B.2. Sheaf Cohomology
  • B.2.1. The Godement Resolution and Cohomology
  • B.2.2. Cohomology and Supports
  • B.2.3. Cech Cohomology
  • B.2.4. De Rham Theorems
  • B.2.5. Direct and Inverse Images
  • B.2.6. Sheaf Cohomology and Closed Subspaces
  • B.2.7. Mapping Cones and Cylinders
  • B.2.8. Duality Theorems on Manifolds
  • B.2.9. Orientations and Fundamental Classes
  • B.3. Local Systems and Their Cohomology
  • B.3.1. Local Systems and Locally Constant Sheaves
  • B.3.2. Homology and Cohomology
  • B.3.3. Local Systems and Flat Connections
  • C. Stratified Spaces and Singularities
  • C.1. Stratified Spaces
  • C.1.1. Pseudomanifolds
  • C.1.2. Whitney Stratifications
  • C.2. Fibrations, and the Topology of Singularities
  • C.2.1. The Milnor Fibration
  • C.2.2. Topology of One-parameter Degenerations
  • C.2.3. An Example: Lefschetz Pencils
  • References
  • Index of Notations
  • Index