Mixed hodge structures /
Saved in:
Author / Creator: | Peters, C. (Chris) |
---|---|
Imprint: | Berlin : Springer, c2008. |
Description: | xiii, 470 p. : ill. ; 24 cm. |
Language: | English |
Series: | Ergebnisse der Mathematik und ihrer Grenzgebiete = Series of modern surveys in mathematics ; 3. Folge, Bd. 52 Ergebnisse der Mathematik und ihrer Grenzgebiete ; 3. Folge, Bd. 52. |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/6825821 |
Table of Contents:
- Introduction
- Part I. Basic Hodge Theory
- 1. Compact Kahler Manifolds
- 1.1. Classical Hodge Theory
- 1.1.1. Harmonic Theory
- 1.1.2. The Hodge Decomposition
- 1.1.3. Hodge Structures in Cohomology and Homology
- 1.2. The Lefschetz Decomposition
- 1.2.1. Representation Theory of SL(2, R)
- 1.2.2. Primitive Cohomology
- 1.3. Applications
- 2. Pure Hodge Structures
- 2.1. Hodge Structures
- 2.1.1. Basic Definitions
- 2.1.2. Polarized Hodge Structures
- 2.2. Mumford-Tate Groups of Hodge Structures
- 2.3. Hodge Filtration and Hodge Complexes
- 2.3.1. Hodge to De Rham Spectral Sequence
- 2.3.2. Strong Hodge Decompositions
- 2.3.3. Hodge Complexes and Hodge Complexes of Sheaves
- 2.4. Refined Fundamental Classes
- 2.5. Almost Kahler V-Manifolds
- 3. Abstract Aspects of Mixed Hodge Structures
- 3.1. Introduction to Mixed Hodge Structures: Formal Aspects
- 3.2. Comparison of Filtrations
- 3.3. Mixed Hodge Structures and Mixed Hodge Complexes
- 3.4. The Mixed Cone
- 3.5. Extensions of Mixed Hodge Structures
- 3.5.1. Mixed Hodge Extensions
- 3.5.2. Iterated Extensions and Absolute Hodge Cohomology
- Part II. Mixed Hodge structures on Cohomology Groups
- 4. Smooth Varieties
- 4.1. Main Result
- 4.2. Residue Maps
- 4.3. Associated Mixed Hodge Complexes of Sheaves
- 4.4. Logarithmic Structures
- 4.5. Independence of the Compactification and Further Complements
- 4.5.1. Invariance
- 4.5.2. Restrictions for the Hodge Numbers
- 4.5.3. Theorem of the Fixed Part and Applications
- 4.5.4. Application to Lefschetz Pencils
- 5. Singular Varieties
- 5.1. Simplicial and Cubical Sets
- 5.1.1. Basic Definitions
- 5.1.2. Sheaves on Semi-simplicial Spaces and Their Cohomology
- 5.1.3. Cohomological Descent and Resolutions
- 5.2. Construction of Cubical Hyperresolutions
- 5.3. Mixed Hodge Theory for Singular Varieties
- 5.3.1. The Basic Construction
- 5.3.2. Mixed Hodge Theory of Proper Modifications
- 5.3.3. Restriction on the Hodge Numbers
- 5.4. Cup Product and the Kunneth Formula
- 5.5. Relative Cohomology
- 5.5.1. Construction of the Mixed Hodge Structure
- 5.5.2. Cohomology with Compact Support
- 6. Singular Varieties: Complementary Results
- 6.1. The Leray Filtration
- 6.2. Deleted Neighbourhoods of Algebraic Sets
- 6.2.1. Mixed Hodge Complexes
- 6.2.2. Products and Deleted Neighbourhoods
- 6.2.3. Semi-purity of the Link
- 6.3. Cup and Cap Products, and Duality
- 6.3.1. Duality for Cohomology with Compact Supports
- 6.3.2. The Extra-Ordinary Cup Product
- 7. Applications to Algebraic Cycles and to Singularities
- 7.1. The Hodge Conjectures
- 7.1.1. Versions for Smooth Projective Varieties
- 7.1.2. The Hodge Conjecture and the Intermediate Jacobian
- 7.1.3. A Version for Singular Varieties
- 7.2. Deligne Cohomology
- 7.2.1. Basic Properties
- 7.2.2. Cycle Classes for Deligne Cohomology
- 7.3. The Filtered De Rham Complex And Applications
- 7.3.1. The Filtered De Rham Complex
- 7.3.2. Application to Vanishing Theorems
- 7.3.3. Applications to Du Bois Singularities
- Part III. Mixed Hodge Structures on Homotopy Groups
- 8. Hodge Theory and Iterated Integrals
- 8.1. Some Basic Results from Homotopy Theory
- 8.2. Formulation of the Main Results
- 8.3. Loop Space Cohomology and the Homotopy De Rham Theorem
- 8.3.1. Iterated Integrals
- 8.3.2. Chen's Version of the De Rham Theorem
- 8.3.3. The Bar Construction
- 8.3.4. Iterated Integrals of 1-Forms
- 8.4. The Homotopy De Rham Theorem for the Fundamental Group
- 8.5. Mixed Hodge Structure on the Fundamental Group
- 8.6. The Sullivan Construction
- 8.7. Mixed Hodge Structures on the Higher Homotopy Groups
- 9. Hodge Theory and Minimal Models
- 9.1. Minimal Models of Differential Graded Algebras
- 9.2. Postnikov Towers and Minimal Models; the Simply Connected Case
- 9.3. Mixed Hodge Structures on the Minimal Model
- 9.4. Formality of Compact Kahler Manifolds
- 9.4.1. The 1-Minimal Model
- 9.4.2. The De Rham Fundamental Group
- 9.4.3. Formality
- Part IV. Hodge Structures and Local Systems
- 10. Variations of Hodge Structure
- 10.1. Preliminaries: Local Systems over Complex Manifolds
- 10.2. Abstract Variations of Hodge Structure
- 10.3. Big Monodromy Groups, an Application
- 10.4. Variations of Hodge Structures Coming From Smooth Families
- 11. Degenerations of Hodge Structures
- 11.1. Local Systems Acquiring Singularities
- 11.1.1. Connections with Logarithmic Poles
- 11.1.2. The Riemann-Hilbert Correspondence (I)
- 11.2. The Limit Mixed Hodge Structure on Nearby Cycle Spaces
- 11.2.1. Asymptotics for Variations of Hodge Structure over a Punctured Disk
- 11.2.2. Geometric Set-Up and Preliminary Reductions
- 11.2.3. The Nearby and Vanishing Cycle Functor
- 11.2.4. The Relative Logarithmic de Rham Complex and Quasi-unipotency of the Monodromy
- 11.2.5. The Complex Monodromy Weight Filtration and the Hodge Filtration
- 11.2.6. The Rational Structure
- 11.2.7. The Mixed Hodge Structure on the Limit
- 11.3. Geometric Consequences for Degenerations
- 11.3.1. Monodromy, Specialization and Wang Sequence
- 11.3.2. The Monodromy and Local Invariant Cycle Theorems
- 11.4. Examples
- 12. Applications of Asymptotic Hodge theory
- 12.1. Applications to Singularities
- 12.1.1. Localizing Nearby Cycles
- 12.1.2. A Mixed Hodge Structure on the Cohomology of Milnor Fibres
- 12.1.3. The Spectrum of Singularities
- 12.2. An Application to Cycles: Grothendieck's Induction Principle
- 13. Perverse Sheaves and D-Modules
- 13.1. Verdier Duality
- 13.1.1. Dimension
- 13.1.2. The Dualizing Complex
- 13.1.3. Statement of Verdier Duality
- 13.1.4. Extraordinary Pull Back
- 13.2. Perverse Complexes
- 13.2.1. Intersection Homology and Cohomology
- 13.2.2. Constructible and Perverse Complexes
- 13.2.3. An Example: Nearby and Vanishing Cycles
- 13.3. Introduction to D-Modules
- 13.3.1. Integrable Connections and D-Modules
- 13.3.2. From Left to Right and Vice Versa
- 13.3.3. Derived Categories of D-modules
- 13.3.4. Inverse and Direct Images
- 13.3.5. An Example: the Gauss-Manin System
- 13.4. Coherent D-Modules
- 13.4.1. Basic Definitions
- 13.4.2. Good Filtrations and Characteristic Varieties
- 13.4.3. Behaviour under Direct and Inverse Images
- 13.5. Filtered D-modules
- 13.5.1. Derived Categories
- 13.5.2. Duality
- 13.5.3. Functoriality
- 13.6. Holonomic D-Modules
- 13.6.1. Symplectic Geometry
- 13.6.2. Basics on Holonomic D-Modules
- 13.6.3. The Riemann-Hilbert Correspondence (II)
- 14. Mixed Hodge Modules
- 14.1. An Axiomatic Introduction
- 14.1.1. The Axioms
- 14.1.2. First Consequences of the Axioms
- 14.1.3. Spectral Sequences
- 14.1.4. Intersection Cohomology
- 14.1.5. Refined Fundamental Classes
- 14.2. The Kashiwara-Malgrange Filtration
- 14.2.1. Motivation
- 14.2.2. The Rational V-Filtration
- 14.3. Polarizable Hodge Modules
- 14.3.1. Hodge Modules
- 14.3.2. Polarizations
- 14.3.3. Lefschetz Operators and the Decomposition Theorem
- 14.4. Mixed Hodge Modules
- 14.4.1. Variations of Mixed Hodge Structure
- 14.4.2. Defining Mixed Hodge Modules
- 14.4.3. About the Axioms
- 14.4.4. Application: Vanishing Theorems
- 14.4.5. The Motivic Hodge Character and Motivic Chern Classes
- Part V. Appendices
- A. Homological Algebra
- A.1. Additive and Abelian Categories
- A.1.1. Pre-Abelian Categories
- A.1.2. Additive Categories
- A.2. Derived Categories
- A.2.1. The Homotopy Category
- A.2.2. The Derived Category
- A.2.3. Injective and Projective Resolutions
- A.2.4. Derived Functors
- A.2.5. Properties of the Ext-functor
- A.2.6. Yoneda Extensions
- A.3. Spectral Sequences and Filtrations
- A.3.1. Filtrations
- A.3.2. Spectral Sequences and Exact Couples
- A.3.3. Filtrations Induce Spectral Sequences
- A.3.4. Derived Functors and Spectral Sequences
- B. Algebraic and Differential Topology
- B.1. Singular (Co)homology and Borel-Moore Homology
- B.1.1. Basic Definitions and Tools
- B.1.2. Pairings and Products
- B.2. Sheaf Cohomology
- B.2.1. The Godement Resolution and Cohomology
- B.2.2. Cohomology and Supports
- B.2.3. Cech Cohomology
- B.2.4. De Rham Theorems
- B.2.5. Direct and Inverse Images
- B.2.6. Sheaf Cohomology and Closed Subspaces
- B.2.7. Mapping Cones and Cylinders
- B.2.8. Duality Theorems on Manifolds
- B.2.9. Orientations and Fundamental Classes
- B.3. Local Systems and Their Cohomology
- B.3.1. Local Systems and Locally Constant Sheaves
- B.3.2. Homology and Cohomology
- B.3.3. Local Systems and Flat Connections
- C. Stratified Spaces and Singularities
- C.1. Stratified Spaces
- C.1.1. Pseudomanifolds
- C.1.2. Whitney Stratifications
- C.2. Fibrations, and the Topology of Singularities
- C.2.1. The Milnor Fibration
- C.2.2. Topology of One-parameter Degenerations
- C.2.3. An Example: Lefschetz Pencils
- References
- Index of Notations
- Index