Spectral theory for random and nonautonomous parabolic equations and applications /

Saved in:
Bibliographic Details
Author / Creator:Mierczynski, Janusz.
Imprint:Boca Raton : CRC Press, c2008.
Description:xiii, 317 p. ; 25 cm.
Language:English
Series:Chapman & Hall/CRC monographs and surveys in pure and applied mathematics ; 139
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/7095573
Hidden Bibliographic Details
Other authors / contributors:Shen, Wenxian, 1961-
ISBN:9781584888956 (alk. paper)
1584888954 (alk. paper)
Notes:Includes bibliographical references (p. 305-313) and index.
Table of Contents:
  • Preface
  • Symbol Description
  • 1. Introduction
  • 1.1. Outline of the Monograph
  • 1.2. General Notations and Concepts
  • 1.3. Standing Assumptions
  • 2. Fundamental Properties in the General Setting
  • 2.1. Assumptions and Weak Solutions
  • 2.2. Basic Properties of Weak Solutions
  • 2.3. The Adjoint Problem
  • 2.4. Perturbation of Coefficients
  • 2.5. The Smooth Case
  • 2.6. Remarks on Equations in Nondivergence Form
  • 3. Spectral Theory in the General Setting
  • 3.1. Principal Spectrum and Principal Lyapunov Exponents: Definitions and Properties
  • 3.2. Exponential Separation: Definitions and Basic Properties
  • 3.3. Existence of Exponential Separation and Entire Positive Solutions
  • 3.4. Multiplicative Ergodic Theorems
  • 3.5. The Smooth Case
  • 3.6. Remarks on the General Nondivergence Case
  • 3.7. Appendix: The Case of One-Dimensional Spatial Domain
  • 4. Spectral Theory in Nonautonomous and Random Cases
  • 4.1. Principal Spectrum and Principal Lyapunov Exponents in Random and Nonautonomous Cases
  • 4.1.1. The Random Case
  • 4.1.2. The Nonautonomous Case
  • 4.2. Monotonicity with Respect to the Zero Order Terms
  • 4.2.1. The Random Case
  • 4.2.2. The Nonautonomous Case
  • 4.3. Continuity with Respect to the Zero Order Coefficients
  • 4.3.1. The Random Case
  • 4.3.2. The Nonautonomous Case
  • 4.4. General Continuity with Respect to the Coefficients
  • 4.4.1. The Random Case
  • 4.4.2. The Nonautonomous Case
  • 4.5. Historical Remarks
  • 4.5.1. The Time Independent and Periodic Case
  • 4.5.2. The General Time Dependent Case
  • 5. Influence of Spatial-Temporal Variations and the Shape of Domain
  • 5.1. Preliminaries
  • 5.1.1. Notions and Basic Assumptions
  • 5.1.2. Auxiliary Lemmas
  • 5.2. Influence of Temporal Variation on Principal Lyapunov Exponents and Principal Spectrum
  • 5.2.1. The Smooth Case
  • 5.2.2. The Nonsmooth Case
  • 5.3. Influence of Spatial Variation on Principal Lyapunov Exponents and Principal Spectrum
  • 5.4. Faber-Krahn Inequalities
  • 5.5. Historical Remarks
  • 6. Cooperative Systems of Parabolic Equations
  • 6.1. Existence and Basic Properties of Mild Solutions in the General Setting
  • 6.1.1. The Nonsmooth Case
  • 6.1.2. The Smooth Case
  • 6.2. Principal Spectrum and Principal Lyapunov Exponents and Exponential Separation in the General Setting
  • 6.2.1. Principal Spectrum and Principal Lyapunov Exponents
  • 6.2.2. Exponential Separation: Basic Properties
  • 6.2.3. Existence of Exponential Separation and Entire Positive Solutions
  • 6.3. Principal Spectrum and Principal Lyapunov Exponents in Nonautonomous and Random Cases
  • 6.3.1. The Random Case
  • 6.3.2. The Nonautonomous Case
  • 6.3.3. Influence of Time and Space Variations
  • 6.4. Remarks
  • 7. Applications to Kolmogorov Systems of Parabolic Equations
  • 7.1. Semilinear Equations of Kolmogorov Type: General Theory
  • 7.1.1. Existence, Uniqueness, and Basic Properties of Solutions
  • 7.1.2. Linearization at the Trivial Solution
  • 7.1.3. Global Attractor and Uniform Persistence
  • 7.2. Semilinear Equations of Kolmogorov Type: Examples
  • 7.2.1. The Random Case
  • 7.2.2. The Nonautonomous Case
  • 7.3. Competitive Kolmogorov Systems of Semilinear Equations: General Theory
  • 7.3.1. Existence, Uniqueness, and Basic Properties of Solutions
  • 7.3.2. Linearization at Trivial and Semitrivial Solutions
  • 7.3.3. Global Attractor and Uniform Persistence
  • 7.4. Competitive Kolmogorov Systems of Semilinear Equations: Examples
  • 7.4.1. The Random Case
  • 7.4.2. The Nonautonomous Case
  • 7.5. Remarks
  • References
  • Index