Algebraic models in geometry /
Saved in:
Author / Creator: | Félix, Y. (Yves) |
---|---|
Imprint: | Oxford ; New York : Oxford University Press, 2008. |
Description: | xxi, 460 p. : ill. ; 25 cm. |
Language: | English |
Series: | Oxford graduate texts in mathematics ; 17 Oxford graduate texts in mathematics ; 17. |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/7142698 |
Table of Contents:
- Preface
- 1. Lie groups and homogeneous spaces
- 1.1. Lie groups
- 1.2. Lie algebras
- 1.3. Lie groups and Lie algebras
- 1.4. Abelian Lie groups
- 1.5. Classical examples of Lie groups
- 1.5.1. Subgroups of the real linear group
- 1.5.2. Subgroups of the complex linear group
- 1.5.3. Subgroups of the quaternionic linear group
- 1.6. Invariant forms
- 1.7. Cohomology of Lie groups
- 1.8. Simple and semisimple compact connected Lie groups
- 1.9. Homogeneous spaces
- 1.10. Principal bundles
- 1.11. Classifying spaces of Lie groups
- 1.12. Stiefel and Grassmann manifolds
- 1.13. The Cartan-Weil model
- 2. Minimal models
- 2.1. Commutative differential graded algebras
- 2.2. Homotopy between morphisms of cdga's
- 2.3. Models in algebra
- 2.3.1. Minimal models of cdga's and morphisms
- 2.3.2. Relative minimal models
- 2.4. Models of spaces
- 2.4.1. Real and rational minimal models
- 2.4.2. Construction of A PL (X)
- 2.4.3. Examples of minimal models of spaces
- 2.4.4. Other models for spaces
- 2.5. Minimal models and homotopy theory
- 2.5.1. Minimal models and homotopy groups
- 2.5.2. Relative minimal model of a fibration
- 2.5.3. The dichotomy theorem
- 2.5.4. Minimal models and some homotopy constructions
- 2.6. Realizing minimal cdga's as spaces
- 2.6.1. Topological realization of a minimal cdga
- 2.6.2. The cochains on a graded Lie algebra
- 2.7. Formality
- 2.7.1. Bigraded model
- 2.7.2. Obstructions to formality
- 2.8. Semifree models
- 3. Manifolds
- 3.1. Minimal models and manifolds
- 3.1.1. Sullivan-Barge classification
- 3.1.2. The rational homotopy groups of a manifold
- 3.1.3. Poincaré duality models
- 3.1.4. Formality of manifolds
- 3.2. Nilmanifolds
- 3.2.1. Relations with Lie algebras
- 3.2.2. Relations with principal bundles
- 3.3. Finite group actions
- 3.3.1. An equivariant model for ¿-spaces
- 3.3.2. Weyl group and cohomology of BG
- 3.4. Biquotients
- 3.4.1. Definitions and properties
- 3.4.2. Models of biquotients
- 3.5. The canonical model of a Riemannian manifold
- 4. Complex and symplectic manifolds
- 4.1. Complex and almost complex manifolds
- 4.1.1. Complex manifolds
- 4.1.2. Almost complex manifolds
- 4.1.3. Differential forms on an almost complex manifold
- 4.1.4. Integrability of almost complex manifolds
- 4.2. Kähler manifolds
- 4.2.1. Definitions and properties
- 4.2.2. Examples: Calabi-Eckmann manifolds
- 4.2.3. Topology of compact Kähler manifolds
- 4.3. The Dolbeault model of a complex manifold
- 4.3.1. Definition and existence
- 4.3.2. The Dolbeault model of a Kähler manifold
- 4.3.3. The Borel spectral sequence
- 4.3.4. The Dolbeault model of Calabi-Eckmann manifolds
- 4.4. The Frölicher spectral sequence
- 4.4.1. Definition and properties
- 4.4.2. Pittie's examples
- 4.5. Symplectic manifolds
- 4.5.1. Definition of symplectic manifold
- 4.5.2. Examples of symplectic manifolds
- 4.5.3. Symplectic manifolds and the hard Lefschetz property
- 4.5.4. Symplectic and complex manifolds
- 4.6. Cohomologically symplectic manifolds
- 4.6.1. C-symplectic manifolds
- 4.6.2. Symplectic homogeneous spaces and biquotients
- 4.6.3. Symplectic fibrations
- 4.6.4. Symplectic nilmanifolds
- 4.6.5. Homotopy of nilpotent symplectic manifolds
- 4.7. Appendix: Complex and symplectic linear algebra
- 4.7.1. Complex structure on a real vector space
- 4.7.2. Complexification of a complex structure
- 4.7.3. Hermitian products
- 4.7.4. Symplectic linear algebra
- 4.7.5. Symplectic and complex linear algebra
- 4.7.6. Generalized complex structure
- 5. Geodesics
- 5.1. The closed geodesic problem
- 5.2. A model for the free loop space
- 5.3. A solution to the closed geodesic problem
- 5.4. A-invariant closed geodesics
- 5.5. Existence of infinitely many A-invariant geodesics
- 5.6. Gromov's estimate and the growth of closed geodesics
- 5.7. The topological entropy
- 5.8. Manifolds whose geodesics are closed
- 5.9. Bar construction, Hochschild homology and cohomology
- 6. Curvature
- 6.1. Introduction: Recollections on curvature
- 6.2. Grove's question
- 6.2.1. The Fang-Rong approach
- 6.2.2. Totaro's approach
- 6.3. Vampiric vector bundles
- 6.3.1. The examples of Özaydin and Walschap
- 6.3.2. The method of Belegradek and Kapovitch
- 6.4. Final thoughts
- 6.5. Appendix
- 7. G-spaces
- 7.1. Basic definitions and results
- 7.2. The Borel fibration
- 7.3. The toral rank
- 7.3.1. Toral rank for rationally elliptic spaces
- 7.3.2. Computation of rk 0 (M) with minimal models
- 7.3.3. The toral rank conjecture
- 7.3.4. Toral rank and center of ¿ * (¿M) $$$ Q
- 7.3.5. The TRC for Lie algebras
- 7.4. The localization theorem
- 7.4.1. Relations between G-manifold and fixed set
- 7.4.2. Some examples
- 7.5. The rational homotopy of a fixed point set component
- 7.5.1. The rational homotopy groups of a component
- 7.5.2. Presentation of the Lie algebra L F = ¿ * (¿F) $$$ Q
- 7.5.3. Z/2Z-Sullivan models
- 7.6. Hamiltonian actions and bundles
- 7.6.1. Basic definitions and properties
- 7.6.2. Hamiltonian and cohomologically free actions
- 7.6.3. The symplectic toral rank theorem
- 7.6.4. Some properties of Hamiltonian actions
- 7.6.5. Hamiltonian bundles
- 8. Blow-ups and Intersection Products
- 8.1. The model of the complement of a submanifold
- 8.1.1. Shriek maps
- 8.1.2. Algebraic mapping cones
- 8.1.3. The model for the complement C
- 8.1.4. Properties of Poincaré duality models
- 8.1.5. The configuration space of two points in a manifold
- 8.2. Symplectic blow-ups
- 8.2.1. Complex blow-ups
- 8.2.2. Blowing up along a submanifold
- 8.3. A model for a symplectic blow-up
- 8.3.1. The basic pullback diagram of PL-forms
- 8.3.2. An illustrative example
- 8.3.3. The model for the blow-up
- 8.3.4. McDuff's example
- 8.3.5. Effect of the symplectic form on the blow-up
- 8.3.6. Vanishing of Chern classes for KT
- 8.4. The Chas-Sullivan loop product on loop space homology
- 8.4.1. The classical intersection product
- 8.4.2. The Chas-Sullivan loop product
- 8.4.3. A rational model for the loop product
- 8.4.4. Hochschild cohomology and Cohen-Jones theorem
- 8.4.5. The Chas-Sullivan loop product and closed geodesics
- 9. A Florilège of geometric applications
- 9.1. Configuration spaces
- 9.1.1. The Fadell-Neuwirth fibrations
- 9.1.2. The rational homotopy of configuration spaces
- 9.1.3. The configuration spaces F(R n ,k)
- 9.1.4. The configuration spaces of a projective manifold
- 9.2. Arrangements
- 9.2.1. Formality of the complement of a geometric lattice
- 9.2.2. Rational hyperbolicity of the space M(A)
- 9.3. Toric topology
- 9.4. Complex smooth algebraic varieties
- 9.5. Spaces of sections and Gelfand-Fuchs cohomology
- 9.5.1. The Haefliger model for spaces of sections
- 9.5.2. The Bousfield-Peterson-Smith model
- 9.5.3. Configuration spaces and spaces of sections
- 9.5.4. Gelfand-Fuchs cohomology
- 9.6. Iterated integrals
- 9.6.1. Definition of iterated integrals
- 9.6.2. The cdga of iterated integrals
- 9.6.3. Iterated integrals and the double bar construction
- 9.6.4. Iterated integrals, the Hochschild complex and the free loop space
- 9.6.5. Formal homology connection and holonomy
- 9.6.6. A topological application
- 9.7. Cohomological conjectures
- 9.7.1. The toral rank conjecture
- 9.7.2. The Halperin conjecture
- 9.7.3. The Bott conjecture
- 9.7.4. The Gromov conjecture on LM
- 9.7.5. The Lalonde-McDuff question
- A. De Rham forms
- A.1. Differential forms
- A.2. Operators on forms
- A.3. The de Rham theorem
- A.4. The Hodge decomposition
- B. Spectral sequences
- B.1. What is a spectral sequence?
- B.2. Spectral sequences in cohomology
- B.3. Spectral sequences and filtrations
- B.4. Serre spectral sequence
- B.5. Zeeman-Moore theorem
- B.6. An algebraic example: The odd spectral sequence
- B.7. A particular case: A double complex
- C. Basic homotopy recollections
- C.1. n-equivalences and homotopy sets
- C.2. Homotopy pushouts and pullbacks
- C.3. Cofibrations and fibrations
- References
- Index