Seismic inverse Q filtering /

Saved in:
Bibliographic Details
Author / Creator:Wang, Yanghua.
Imprint:Malden, MA ; Oxford : Blackwell Pub., 2008.
Description:ix, 238 p. : ill. (some col.) ; 24 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/7198599
Hidden Bibliographic Details
ISBN:1405185406 (hbk. : alk. paper)
9781405185400 (hbk. : alk. paper)
Notes:Includes bibliographical references (p. [227]-234) and indexes.
Table of Contents:
  • Preface
  • 1. Introduction to inverse Q filtering
  • 1.1. The earth Q effect on seismic waves
  • 1.2. Inverse Q filters
  • 1.3. The effectiveness of inverse Q filtering
  • Part I. Mathematical Q models
  • 2. Kolsky's model for seismic attenuation and dispersion
  • 2.1. Kolsky's attenuation-dispersion model
  • 2.2. Modification to the Kolsky model
  • 2.3. Accurate velocity dispersion correction
  • 2.4. Comparison with different Q models
  • 3. Mathematical definition of the earth Q models
  • 3.1. Mathematical definition of Q
  • 3.2. Kolsky's Q model and the complex wavenumber
  • 3.3. The Strick-Azimi Q model
  • 3.4. Kjartansson's constant-Q model
  • 3.5. Azimi's second and third Q models
  • 3.6. M8ller's Q model
  • 3.7. The Zener or standard linear solid model
  • 3.8. The Cole-Cole Q model
  • 3.9. A general linear model
  • Part II. Inverse Q filters
  • 4. Stabilized inverse Q filtering algorithm
  • 4.1. Basics of inverse Q filtering
  • 4.2. Numerical instability of inverse Q filtering
  • 4.3. Stabilized inverse Q filter
  • 4.4. Comparison with gain-limited inverse Q filter
  • 4.5. Comparison with a conventional inverse Q filter
  • 4.6. Synthetic and real data examples
  • 5. Inverse Q filtering for phase and amplitude separately
  • 5.1. Phase-only inverse Q filtering
  • 5.2. Amplitude-only inverse Q filtering
  • 5.3. Forward Q filtering
  • 5.4. Summary of inverse and forward Q filters by downward. continuation
  • 5.5. Different stabilization schemes
  • 6. Layered implementation of inverse Q filters
  • 6.1. The layered approach to inverse Q filtering
  • 6.2. Inverse Q filtering within a constant-Q layer
  • 6.3. Phase- or amplitude-only inverse Q filtering
  • 6.4. Forward Q filtering
  • 6.5. Application of layered inverse Q filtering
  • 7. Inverse Q filtering in the Gabor transform domain
  • 7.1. Stabilized inverse Q filter
  • 7.2. The Gabor transform
  • 7.3. Inverse Q filtering by Gabor transform
  • 7.4. Forward Q filtering by Gabor transform
  • 7.5. An empirical formula for the stabilization factor
  • 8. The effectiveness of stabilized inverse Q filtering
  • 8.1. Inverse Q filtering of a land seismic section
  • 8.2. Flattening the amplitude spectrum and strengthening. the relative amplitude
  • 8.3. Increasing the spectral bandwidth
  • 8.4. Improving the signal-to-noise ratio
  • 8.5. Enhancing seismic resolution
  • 8.6. Sensitivity of the resolution enhancement to Q values
  • 9. Migration with inverse Q filtering
  • 9.1. Inverse Q filtered migration in the wavenumberfrequency. domain
  • 9.2. Stabilized migration with lateral variation in velocity. and Q models
  • 9.3. The implicit finite-difference extrapolator in the spacefrequency. domain
  • 9.4. Migration examples
  • Part III. Q estimation
  • 10. Q estimation from vertical seismic profiling data
  • 10.1. The attenuation effect on VSP waveform
  • 10.2. Spectral ratio method for Q estimation
  • 10.3. The multitaper technique for spectral estimation
  • 10.4. Robust Q estimation from real VSP data
  • 11. Q analysis from reflection seismic data
  • 11.1. Q analysis based on amplitude attenuation
  • 11.2. Q analysis based on amplitude compensation
  • 11.3. Interval-Q calculation by linear inversion
  • 11.4. Q analyses on the P-P and P-SV wave sections
  • 12. Crosshole seismic tomography for the Q model
  • 12.1. Inverse theory for waveform tomography
  • 12.2. Issues in real data application
  • 12.3. Waveform inversion for the velocity model
  • 12.4. Waveform tomography for the attenuation model
  • References. Aut