Blind image deconvolution : theory and applications /
Saved in:
Imprint: | Boca Raton : CRC Press, c2007. |
---|---|
Description: | 448 p. : ill. (some col.) ; 25 cm. |
Language: | English |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/7247389 |
Table of Contents:
- 1. Blind Image Deconvolution: Problem Formulation and Existing Approaches
- 1.1. Introduction
- 1.2. Mathematical Problem Formulation
- 1.3. Classification of Blind Image Deconvolution Methodologies
- 1.4. Bayesian Framework for Blind Image Deconvolution
- 1.5. Bayesian Modeling of Blind Image Deconvolution
- 1.5.1. Observation Model
- 1.5.2. Parametric Prior Blur Models
- 1.5.3. Prior Image and Blur Models
- 1.5.4. Hyperprior Models
- 1.6. Bayesian Inference Methods in Blind Image Deconvolution
- 1.6.1. Maximum a Posteriori and Maximum Likelihood
- 1.6.2. Minimum Mean Squared Error
- 1.6.3. Marginalizing Hidden Variables
- 1.6.4. Variational Bayesian Approach
- 1.6.5. Sampling Methods
- 1.7. Non-Bayesian Blind Image Deconvolution Models
- 1.7.1. Spectral and Cepstral Zero Methods
- 1.7.2. Zero Sheet Separation Algorithms
- 1.7.3. ARMA Parameter Estimation Algorithms
- 1.7.4. Nonparametric Deterministic Constraints Algorithms
- 1.7.5. Nonparametric Algorithms Based on Higher-Order Statistics
- 1.7.6. Total Least Squares (TLS)
- 1.7.7. Learning-Based Algorithms
- 1.7.8. Methods for Spatially Varying Degradation
- 1.7.9. Multichannel Methods
- 1.8. Conclusions
- References
- 2. Blind Image Deconvolution Using Bussgang Techniques: Applications to Image Deblurring and Texture Synthesis
- Abstract
- 2.1. Introduction
- 2.2. Bussgang Processes
- 2.3. Single-Channel Bussgang Deconvolution
- 2.3.1. Convergency Issue
- 2.3.2. Application to Texture Synthesis
- 2.4. Multichannel Bussgang Deconvolution
- 2.4.1. The Observation Model
- 2.4.2. Multichannel Wiener Filter
- 2.4.3. Multichannel Bussgang Algorithm
- 2.4.4. Application to Image Deblurring: Binary Text and Spiky Images
- 2.4.5. Application to Image Deblurring: Natural Images
- 2.5. Conclusions
- References
- 3. Blind Multiframe Image Deconvolution Using Anisotropic Spatially Adaptive Filtering for Denoising and Regularization
- Abstract
- 3.1. Introduction
- 3.1.1. Blind and Nonblind Inverse
- 3.1.2. Inverse Regularization
- 3.2. Observation Model and Preliminaries
- 3.3. Frequency Domain Equations
- 3.4. Projection Gradient Optimization
- 3.5. Anisotropic LPA-ICI Spatially Adaptive Filtering
- 3.5.1. Motivation
- 3.5.2. Sectorial Neighborhoods
- 3.5.3. Adaptive Window Size
- 3.5.4. LPA-ICI Filtering
- 3.6. Blind Deconvolution Algorithm
- 3.6.1. Main Procedure
- 3.6.2. Image Alignment
- 3.7. Identifiability and Convergence
- 3.7.1. Perfect Reconstruction
- 3.7.2. Hessian and Identifiability
- 3.7.3. Conditioning and Convergence Rate
- 3.8. Simulations
- 3.8.1. Criteria and Algorithm Parameters
- 3.8.2. Illustrative Results
- 3.8.3. Perfect Reconstruction
- 3.8.4. Numerical Results
- 3.8.5. Image Alignment
- 3.8.6. Reconstruction of Color Images
- 3.9. Conclusions
- Acknowledgments
- References
- 4. Bayesian Methods Based on Variational Approximations for Blind Image Deconvolution
- Abstract
- 4.1. Introduction
- 4.2. Background on Variational Methods
- 4.3. Variational Blind Deconvolution
- 4.3.1. Variational Functional F(q, ?)
- 4.3.2. Maximization of the Variational Bound F(q, ?)
- 4.4. Numerical Experiments
- 4.4.1. Partially Known Case
- 4.4.2. Unknown Case
- 4.5. Conclusions and Future Work
- Appendix A. Computation of the Variational Bound F(q, ?)
- Appendix B. Maximization of F{{q, ?)
- References
- 5. Deconvolution of Medical Images from Microscopic to Whole Body Images
- Abstract
- 5.1. Introduction
- 5.1.1. Medical Imaging: Tendencies and Goals
- 5.1.2. Linear Modeling of Image Formation
- 5.1.3. Blind Deconvolution in Medical Ultrasound Imaging
- 5.1.4. Blind Deconvolution in Single Photon Emission Computed Tomography
- 5.1.5. Blind Deconvolution in Confocal Microscopy
- 5.1.6. Organization of the Chapter
- 5.2. Nonblind Deconvolution
- 5.2.1. Regularization via Maximum a Posteriori Estimation
- 5.2.2. Numerical Optimization via Newton Method
- 5.2.3. Blind Deconvolution with Shift-Variant Blurs
- 5.3. Blind Deconvolution in Ultrasound Imaging
- 5.3.1. Blind Deconvolution via Statistical Modeling
- 5.3.2. Blind Deconvolution via Higher-Order Spectra Analysis
- 5.3.3. Horaomorphic Deconvolution: 1-D Case
- 5.3.4. Homomorphic Deconvolution: 2-D Case
- 5.3.5. Generalized Homomorphic Deconvolution
- 5.3.6. Blind Deconvolution via Inverse Filtering
- 5.4. Blind Deconvolution in Spect
- 5.4.1. Origins of the Blurring Artifact in Spect
- 5.4.2. Blind Deconvolution via Alternative Minimization
- 5.4.3. Blind Deconvolution via Nonnegativity and Support Constrains Recursive Inverse Filtering
- 5.5. Blind Deconvolution in Confocal Microscopy
- 5.5.1. Maximum Likelihood Deconvolution in Fluorescence Microscopy
- 5.5.2. Refinements of the EM Algorithms
- 5.5.3. Blind Deconvolution in 3-D Transmitted Light Brightfield Microscopy
- 5.6. Summary
- References
- 6. Bayesian Estimation of Blur and Noise in Remote Sensing Imaging
- Abstract
- 6.1. Introduction
- 6.1.1. Blind Deconvolution: State of the Art
- 6.1.2. Constraining a Difficult Problem
- 6.1.3. The Bayesian Viewpoint
- 6.2. The Forward Model
- 6.2.1. Modeling the Natural Scene Using Fractals
- 6.2.2. Understanding the Image Formation
- 6.3. Bayesian Estimation: Invert the Forward Model
- 6.3.1. Marginalization and Related Approximations
- 6.3.2. A Natural Parameter Estimation Algorithm (BLINDE)
- 6.3.3. Why Use a Simplified Model?
- 6.3.4. A Simplified, Optimized Algorithm
- 6.4. Possible Improvements and Further Development
- 6.4.1. Computing Uncertainties
- 6.4.2. Model Assessment and Checking
- 6.4.3. Robustness-Related Improvements
- 6.5. Results
- 6.5.1. First Method: Blinde
- 6.5.2. Second method
- 6.6. Conclusions
- Acknowledgments
- References
- 7. Deconvolution and Blind Deconvolution in Astronomy
- Abstract
- 7.1. Introduction
- 7.2. The Deconvolution Problem
- 7.3. Linear Regularized Methods
- 7.3.1. Least Squares Solution
- 7.3.2. Tikhonov Regularization
- 7.4. Clean
- 7.5. Bayesian Methodology
- 7.5.1. Definition
- 7.5.2. Maximum Likelihood with Gaussian Noise
- 7.5.3. Gaussian Bayes Model
- 7.5.4. Maximum Likelihood with Poisson Noise
- 7.5.5. Maximum a Posteriori with Poisson Noise
- 7.5.6. Maximum Entropy Method
- 7.5.7. Other Regularization Models
- 7.6. Iterative Regularized Methods
- 7.6.1. Constraints
- 7.6.2. Jansson-Van Cittert Method
- 7.6.3. Other Iterative Methods
- 7.7. Wavelet-Based Deconvolution
- 7.7.1. Introduction
- 7.7.2. Regularization from the Multiresolution Support
- 7.7.3. Multiresolution Clean
- 7.7.4. The Wavelet Constraint
- 7.8. Deconvolution and Resolution
- 7.9. Myopic and Blind Deconvolution
- 7.9.1. Myopic Deconvolution
- 7.9.2. Blind Deconvolution
- 7.10. Conclusions and Chapter Summary
- Acknowledgments
- References
- 8. Multiframe Blind Deconvolution Coupled with FrameRegistration and Resolution Enhancement
- Abstract.
- 8.1. Introduction
- 8.2. Mathematical Model
- 8.3. Polyphase Formulation
- 8.3.1. Integer Downsampling Factor
- 8.3.2. Rational Downsampling Factor
- 8.4. Reconstruction of Volatile Blurs
- 8.4.1. The MBD Case
- 8.4.2. The RSR Case
- 8.5. Blind Superresolution
- 8.6. Experiments
- 8.6.1. Simulated Data
- 8.6.2. Real Data
- 8.6.3. Performance Experiments
- 8.7. Conclusions
- Acknowledgment
- References
- 9. Blind Reconstruction of Multiframe Imagery Based on Fusion and Classification
- Abstract.
- 9.1. Introduction
- 9.2. System Overview
- 9.3. Recursive Inverse Filtering with Finite Normal-Density Mixtures (RIF-FNM)
- 9.3.1. Image Modeling Using Finite Mixture Distributions
- 9.3.2. Pixel Classification
- 9.3.3. ML-Based Image Fusion
- 9.4. Optimal Filter Adaptation
- 9.5. Effects of Noise
- 9.6. The Fusion and Classification Recursive Inverse Filtering Algorithm (FAC-RIF)
- 9.6.1. The Iterative Algorithm
- 9.6.2. Prefiltering and Postfiltering Processing
- 9.6.3. Classification
- 9.6.4. Fusion-Based Classification
- 9.6.5. Fusion of Reconstructed Images
- 9.7. Experimental Results
- 9.8. Final Remarks
- References
- 10. Blind Deconvolution and Structured Matrix Computations with Applications to Array Imaging
- Abstract
- 10.1. Introduction
- 10.2. One-Dimensional Deconvolution Formulation
- 10.3. Regularized and Constrained TLS Formulation
- 10.3.1. Symmetric Point Spread Functions
- 10.4. Numerical Algorithms
- 10.4.1. The Preconditioned Conjugate Gradient Method
- 10.4.2. Cosine Transform-Based Preconditioners
- 10.5. Two-Dimensional Deconvolution Problems
- 10.6. Numerical Examples
- 10.7. Application: High-Resolution Image Reconstruction
- 10.7.1. Mathematical Model
- 10.7.2. Image Reconstruction Formulation
- 10.7.3. Simulation Results
- 10.8. Concluding Remarks and Current Work
- Acknowledgments
- References
- Index