Practical algorithms for image analysis : description, examples, programs, and projects /

Saved in:
Bibliographic Details
Author / Creator:O'Gorman, Lawrence.
Edition:2nd ed.
Imprint:Cambridge ; New York : Cambridge University Press, 2008.
Description:vi, 349 p. : ill. ; 27 cm. + 1 CD-ROM (4 3/4 in.)
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/7247395
Hidden Bibliographic Details
Other uniform titles:Sammon, Michael J.
Seul, Michael.
Seul, Michael. Practical algorithms for image analysis.
ISBN:9780521884112
052188411X
Notes:Seul's name appears first on the earlier ed.
Includes bibliographical references and index.
System requirements : CD-ROM contains files conforming to the Joliet file naming convention and is optimized for Windows-95, 98, and NT computers and LINUX systems capable of reading Joliet CD-ROM file systems. Macintosh and other non-Windows computers may not read these file names correctly, or be able to find links to these files.
Table of Contents:
  • 1. Introduction
  • 1.1. Introduction
  • 1.2. Annotated Section Overview
  • 1.3. A Guided Tour
  • 2. Global Image Analysis
  • 2.1. Intensity Histogram: Global Features
  • 2.2. Histogram Transformations: Global Enhancement
  • 2.3. Combining Images
  • 2.4. Geometric Image Transformations
  • 2.5. Color Image Transformations
  • 3. Gray-Scale Image Analysis
  • 3.1. Local Image Operations: Convolution
  • 3.2. Noise Reduction
  • 3.3. Edge Enhancement and Flat Fielding
  • 3.4. Edge and Peak Point Detection
  • 3.5. Advanced Edge Detection
  • 3.6. Subsampling
  • 3.7. Multiresolution Analysis
  • 3.8. Template Matching
  • 3.9. Gabor Wavelet Analysis
  • 3.10. Binarization
  • 4. Binary Image Analysis
  • 4.1. Morphological and Cellular Processing
  • 4.2. Binary Noise Removal
  • 4.3. Region Detection
  • 4.4. Shape Analysis: Geometrical Features and Moments
  • 4.5. Advanced Shape Analysis: Fourier Descriptors
  • 4.6. Convex Hull of Polygons
  • 4.7. Thinning
  • 4.8. Linewidth Determination
  • 4.9. Global Features and Image Profiles
  • 4.10. Hough Transform
  • 5. Analysis of Lines and Line Patterns
  • 5.1. Chain Coding
  • 5.2. Line Features and Noise Reduction
  • 5.3. Polygonalization
  • 5.4. Critical Point Detection
  • 5.5. Straight-Line Fitting
  • 5.6. Cubic Spline Fitting
  • 5.7. Morphology and Topology of Line Patterns
  • 6. Analysis of Point Patterns
  • 6.1. The Voronoi Diagram of Point Patterns
  • 6.2. Spatial Statistics of Point Patterns: Distribution Functions
  • 6.3. Topology and Geometry of Cellular Patterns
  • 6.4. The k-Nearest-Neighbor (k-NN) Problem
  • 7. Frequency Domain Analysis
  • 7.1. The 2D Discrete Fourier Transform
  • 7.2. Frequency Domain Filtering
  • 8. Program Descriptions
  • 8.1. Introduction
  • 8.2. Programs by Chapter
  • 8.3. Alphabetical Listing of Programs
  • 9. Projects
  • Appendix. Synopsis of Important Concepts
  • A.1. The Fourier Transform: Spatial Domain Versus Frequency Domain
  • A.2. Linear Systems: Impulse Response, Convolution, and Transfer Function
  • A.3. Special-Purpose Filters
  • A.4. The Whittaker-Shannon Sampling Theorem
  • A.5. Commonly Used Data Structures
  • Index