Practical algorithms for image analysis : description, examples, programs, and projects /
Saved in:
Author / Creator: | O'Gorman, Lawrence. |
---|---|
Edition: | 2nd ed. |
Imprint: | Cambridge ; New York : Cambridge University Press, 2008. |
Description: | vi, 349 p. : ill. ; 27 cm. + 1 CD-ROM (4 3/4 in.) |
Language: | English |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/7247395 |
Table of Contents:
- 1. Introduction
- 1.1. Introduction
- 1.2. Annotated Section Overview
- 1.3. A Guided Tour
- 2. Global Image Analysis
- 2.1. Intensity Histogram: Global Features
- 2.2. Histogram Transformations: Global Enhancement
- 2.3. Combining Images
- 2.4. Geometric Image Transformations
- 2.5. Color Image Transformations
- 3. Gray-Scale Image Analysis
- 3.1. Local Image Operations: Convolution
- 3.2. Noise Reduction
- 3.3. Edge Enhancement and Flat Fielding
- 3.4. Edge and Peak Point Detection
- 3.5. Advanced Edge Detection
- 3.6. Subsampling
- 3.7. Multiresolution Analysis
- 3.8. Template Matching
- 3.9. Gabor Wavelet Analysis
- 3.10. Binarization
- 4. Binary Image Analysis
- 4.1. Morphological and Cellular Processing
- 4.2. Binary Noise Removal
- 4.3. Region Detection
- 4.4. Shape Analysis: Geometrical Features and Moments
- 4.5. Advanced Shape Analysis: Fourier Descriptors
- 4.6. Convex Hull of Polygons
- 4.7. Thinning
- 4.8. Linewidth Determination
- 4.9. Global Features and Image Profiles
- 4.10. Hough Transform
- 5. Analysis of Lines and Line Patterns
- 5.1. Chain Coding
- 5.2. Line Features and Noise Reduction
- 5.3. Polygonalization
- 5.4. Critical Point Detection
- 5.5. Straight-Line Fitting
- 5.6. Cubic Spline Fitting
- 5.7. Morphology and Topology of Line Patterns
- 6. Analysis of Point Patterns
- 6.1. The Voronoi Diagram of Point Patterns
- 6.2. Spatial Statistics of Point Patterns: Distribution Functions
- 6.3. Topology and Geometry of Cellular Patterns
- 6.4. The k-Nearest-Neighbor (k-NN) Problem
- 7. Frequency Domain Analysis
- 7.1. The 2D Discrete Fourier Transform
- 7.2. Frequency Domain Filtering
- 8. Program Descriptions
- 8.1. Introduction
- 8.2. Programs by Chapter
- 8.3. Alphabetical Listing of Programs
- 9. Projects
- Appendix. Synopsis of Important Concepts
- A.1. The Fourier Transform: Spatial Domain Versus Frequency Domain
- A.2. Linear Systems: Impulse Response, Convolution, and Transfer Function
- A.3. Special-Purpose Filters
- A.4. The Whittaker-Shannon Sampling Theorem
- A.5. Commonly Used Data Structures
- Index