Lectures on symplectic geometry /

Saved in:
Bibliographic Details
Author / Creator:Silva, Ana Cannas da
Edition:Corr. 2. printing.
Imprint:Berlin ; New York : Springer, 2008, c2001.
Description:xiv, 247 p. : ill. ; 24 cm
Language:English
Series:Lecture notes in mathematics ; 1764
Lecture notes in mathematics (Springer-Verlag) ; 1764.
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/7249419
Hidden Bibliographic Details
ISBN:9783540421955
3540421955
Notes:Includes bibliographical references (p. 233-237) and index.
Table of Contents:
  • Foreword
  • Introduction
  • I. Symplectic Manifolds
  • 1. Symplectic Forms
  • 1.1. Skew-Symmetric Bilinear Maps
  • 1.2. Symplectic Vector Spaces
  • 1.3. Symplectic Manifolds
  • 1.4. Symplectomorphisms
  • Homework 1. Symplectic Linear Algebra
  • 2. Symplectic Form on the Cotangent Bundle
  • 2.1. Cotangent Bundle
  • 2.2. Tautological and Canonical Forms in Coordinates
  • 2.3. Coordinate-Free Definitions
  • 2.4. Naturality of the Tautological and Canonical Forms
  • Homework 2. Symplectic Volume
  • II. Symplectomorphisms
  • 3. Lagrangian Submanifolds
  • 3.1. Submanifolds
  • 3.2. Lagrangian Submanifolds of T*X
  • 3.3. Conormal Bundles
  • 3.4. Application to Symplectomorphisms
  • Homework 3. Tautological Form and Symplectomorphisms
  • 4. Generating Functions
  • 4.1. Constructing Symplectomorphisms
  • 4.2. Method of Generating Functions
  • 4.3. Application to Geodesic Flow
  • Homework 4. Geodesic Flow
  • 5. Recurrence
  • 5.1. Periodic Points
  • 5.2. Billiards
  • 5.3. Poincaré Recurrence
  • III. Local Forms
  • 6. Preparation for the Local Theory
  • 6.1. Isotopies and Vector Fields
  • 6.2. Tubular Neighborhood Theorem
  • 6.3. Homotopy Formula
  • Homework 5. Tubular Neighborhoods in R n
  • 7. Moser Theorems
  • 7.1. Notions of Equivalence for Symplectic Structures
  • 7.2. Moser Trick
  • 7.3. Moser Local Theorem
  • 8. Darboux-Moser-Weinstein Theory
  • 8.1. Classical Darboux Theorem
  • 8.2. Lagrangian Subspaces
  • 8.3. Weinstein Lagrangian Neighborhood Theorem
  • Homework 6. Oriented Surfaces
  • 9. Weinstein Tubular Neighborhood Theorem
  • 9.1. Observation from Linear Algebra
  • 9.2. Tubular Neighborhoods
  • 9.3. Application 1: Tangent Space to the Group of Symplectomorphisms
  • 9.4. Application 2: Fixed Points of Symplectomorphisms
  • IV. Contact Manifolds
  • 10. Contact Forms
  • 10.1. Contact Structures
  • 10.2. Examples
  • 10.3. First Properties
  • Homework 7. Manifolds of Contact Elements
  • 11. Contact Dynamics
  • 11.1. Reeb Vector Fields
  • 11.2. Symplectization
  • 11.3. Conjectures of Seifert and Weinstein
  • V. Compatible Almost Complex Structures
  • 12. Almost Complex Structures
  • 12.1. Three Geometries
  • 12.2. Complex Structures on Vector Spaces
  • 12.3. Compatible Structures
  • Homework 8. Compatible Linear Structures
  • 13. Compatible Triples
  • 13.1. Compatibility
  • 13.2. Triple of Structures
  • 13.3. First Consequences
  • Homework 9. Contractibility
  • 14. Dolbeault Theory
  • 14.1. Splittings
  • 14.2. Forms of Type (l, m)
  • 14.3. J-Holomorphic Functions
  • 14.4. Dolbeault Cohomology
  • Homework 10. Integrability
  • VI. Kähler Manifolds
  • 15. Complex Manifolds
  • 15.1. Complex Charts
  • 15.2. Forms on Complex Manifolds
  • 15.3. Differentials
  • Homework 11. Complex Projective Space
  • 16. Kähler Forms
  • 16.1. Kähler Forms
  • 16.2. An Application
  • 16.3. Recipe to Obtain Kähler Forms
  • 16.4. Local Canonical Form for Kähler Forms
  • Homework 12. The Fubini-Study Structure
  • 17. Compact Kähler Manifolds
  • 17.1. Hodge Theory
  • 17.2. Immediate Topological Consequences
  • 17.3. Compact Examples and Counterexamples
  • 17.4. Main Kähler Manifolds
  • VII. Hamiltonian Mechanics
  • 18. Hamiltonian Vector Fields
  • 18.1. Hamiltonian and Symplectic Vector Fields
  • 18.2. Classical Mechanics
  • 18.3. Brackets
  • 18.4. Integrable Systems
  • Homework 13. Simple Pendulum
  • 19. Variational Principles
  • 19.1. Equations of Motion
  • 19.2. Principle of Least Action
  • 19.3. Variational Problems
  • 19.4. Solving the Euler-Lagrange Equations
  • 19.5. Minimizing Properties
  • Homework 14. Minimizing Geodesies
  • 20. Legendre Transform
  • 20.1. Strict Convexity
  • 20.2. Legendre Transform
  • 20.3. Application to Variational Problems
  • Homework 15. Legendre Transform
  • VIII. Moment Maps
  • 21. Actions
  • 21.1. One-Parameter Groups of Diffeomorphisms
  • 21.2. Lie Groups
  • 21.3. Smooth Actions
  • 21.4. Symplectic and Hamiltonian Actions
  • 21.5. Adjoint and Coadjoint Representations
  • Homework 16. Hermitian Matrices
  • 22. Hamiltonian Actions
  • 22.1. Moment and Comoment Maps
  • 22.2. Orbit Spaces
  • 22.3. Preview of Reduction
  • 22.4. Classical Examples
  • Homework 17. Coadjoint Orbits
  • IX. Symplectic Reduction
  • 23. The Marsden-Weinstein-Meyer Theorem
  • 23.1. Statement
  • 23.2. Ingredients
  • 23.3. Proof of the Marsden-Weinstein-Meyer Theorem
  • 24. Reduction
  • 24.1. Noether Principle
  • 24.2. Elementary Theory of Reduction
  • 24.3. Reduction for Product Groups
  • 24.4. Reduction at Other Levels
  • 24.5. Orbifolds
  • Homework 18. Spherical Pendulum
  • X. Moment Maps Revisited
  • 25. Moment Map in Gauge Theory
  • 25.1. Connections on a Principal Bundle
  • 25.2. Connection and Curvature Forms
  • 25.3. Symplectic Structure on the Space of Connections
  • 25.4. Action of the Gauge Group
  • 25.5. Case of Circle Bundles
  • Homework 19. Examples of Moment Maps
  • 26. Existence and Uniqueness of Moment Maps
  • 26.1. Lie Algebras of Vector Fields
  • 26.2. Lie Algebra Cohomology
  • 26.3. Existence of Moment Maps
  • 26.4. Uniqueness of Moment Maps
  • Homework 20. Examples of Reduction
  • 27. Convexity
  • 27.1. Convexity Theorem
  • 27.2. Effective Actions
  • 27.3. Examples
  • Homework 21. Connectedness
  • XI. Symplectic Toric Manifolds
  • 28. Classification of Symplectic Toric Manifolds
  • 28.1. Delzant Polytopes
  • 28.2. Delzant Theorem
  • 28.3. Sketch of Delzant Construction
  • 29. Delzant Construction
  • 29.1. Algebraic Set-Up
  • 29.2. The Zero-Level
  • 29.3. Conclusion of the Delzant Construction
  • 29.4. Idea Behind the Delzant Construction
  • Homework 22. Delzant Theorem
  • 30. Duistermaat-Heckman Theorems
  • 30.1. Duistermaat-Heckman Polynomial
  • 30.2. Local Form for Reduced Spaces
  • 30.3. Variation of the Symplectic Volume
  • Homework 23. S 1 -Equivariant Cohomology
  • References
  • Index