Confidence intervals in generalized regression models /
Saved in:
Author / Creator: | Uusipaikka, Esa. |
---|---|
Imprint: | Boca Raton, FL : CRC Press, c2009. |
Description: | xxvii, 294 p. : ill. ; 25 cm. + 1 CD-ROM (4 3/4 in.). |
Language: | English |
Series: | Statistics, textbooks and monographs ; [v. 194] |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/7255515 |
Table of Contents:
- List of Tables
- List of Figures
- Preface
- Introduction
- 1. Likelihood-Based Statistical Inference
- 1.1. Statistical evidence
- 1.1.1. Response and its statistical model
- 1.1.2. Sample space, parameter space, and model function
- 1.1.3. Interest functions
- 1.2. Statistical inference
- 1.2.1. Evidential statements
- 1.2.2. Uncertainties of statements
- 1.3. Likelihood concepts and law of likelihood
- 1.3.1. Likelihood, score, and observed information functions
- 1.3.2. Law of likelihood and relative likelihood function
- 1.4. Likelihood-based methods
- 1.4.1. Likelihood region
- 1.4.2. Uncertainty of likelihood region
- 1.5. Profile likelihood-based confidence intervals
- 1.5.1. Profile likelihood function
- 1.5.2. Profile likelihood region and its uncertainty
- 1.5.3. Profile likelihood-based confidence interval
- 1.5.4. Calculation of profile likelihood-based confidence intervals
- 1.5.5. Comparison with the delta method
- 1.6. Likelihood ratio tests
- 1.6.1. Model restricted by hypothesis
- 1.6.2. Likelihood of the restricted model
- 1.6.3. General likelihood ratio test statistic (LRT statistic)
- 1.6.4. Likelihood ratio test and its observed significance level
- 1.7. Maximum likelihood estimate
- 1.7.1. Maximum likelihood estimate (MLE)
- 1.7.2. Asymptotic distribution of MLE
- 1.8. Model selection
- 1.9. Bibliographic notes
- 2. Generalized Regression Model
- 2.1. Examples of regression data
- 2.2. Definition of generalized regression model
- 2.2.1. Response
- 2.2.2. Distributions of the components of response
- 2.2.3. Regression function and regression parameter
- 2.2.4. Regressors and model matrix (matrices)
- 2.2.5. Example
- 2.3. Special cases of GRM
- 2.3.1. Assumptions on parts of GRM
- 2.3.2. Various special GRMs
- 2.4. Likelihood inference
- 2.5. MLE with iterative reweighted least squares
- 2.6. Model checking
- 2.7. Bibliographic notes
- 3. General Linear Model
- 3.1. Definition of the general linear model
- 3.2. Estimate of regression coefficients
- 3.2.1. Least squares estimate (LSE)
- 3.2.2. Maximum likelihood estimate (MLE)
- 3.3. Test of linear hypotheses
- 3.4. Confidence regions and intervals
- 3.4.1. Joint confidence regions for finite sets of linear combinations
- 3.4.2. Separate confidence intervals for linear combinations
- 3.5. Model checking
- 3.6. Bibliographic notes
- 4. Nonlinear Regression Model
- 4.1. Definition of nonlinear regression model
- 4.2. Estimate of regression parameters
- 4.2.1. Least squares estimate (LSE) of regression parameters
- 4.2.2. Maximum likelihood estimate (MLE)
- 4.3. Approximate distribution of LRT statistic
- 4.4. Profile likelihood-basec confidence region
- 4.5. Profile likelihood-based confidence interval
- 4.6. LRT for a hypothesis on finite set of functions
- 4.7. Model checking
- 4.8. Bibliographic notes
- 5. Generalized Linear Model
- 5.1. Definition of generalized linear model
- 5.1.1. Distribution, linear predictor, and link function
- 5.1.2. Examples of distributions generating generalized linear models
- 5.2. MLE of regression coefficients
- 5.2.1. MLE
- 5.2.2. Newton-Raphson and Fisher-scoring
- 5.3. Bibliographic notes
- 6. Binomial and Logistic Regression Model
- 6.1. Data
- 6.2. Binomial distribution
- 6.3. Link functions
- 6.3.1. Unparametrized link functions
- 6.3.2. Parametrized link functions
- 6.4. Likelihood inference
- 6.4.1. Likelihood function of binomial data
- 6.4.2. Estimates of parameters
- 6.4.3. Likelihood ratio statistic or deviance function
- 6.4.4. Distribution of deviance
- 6.4.5. Model checking
- 6.5. Logistic regression model
- 6.6. Models with other link functions
- 6.7. Nonlinear binomial regression model
- 6.8. Bibliographic notes
- 7. Poisson Regression Model
- 7.1. Data
- 7.2. Poisson distribution
- 7.3. Link functions
- 7.3.1. Unparametrized link functions
- 7.3.2. Parametrized link functions
- 7.4. Likelihood inference
- 7.4.1. Likelihood function of Poisson data
- 7.4.2. Estimates of parameters
- 7.4.3. Likelihood ratio statistic or deviance function
- 7.4.4. Distribution of deviance
- 7.4.5. Model checking
- 7.5. Log-linear model
- 7.6. Bibliographic notes
- 8. Multinomial Regression Model
- 8.1. Data
- 8.2. Multinomial distribution
- 8.3. Likelihood function
- 8.4. Logistic multinomial regression model
- 8.5. Proportional odds regression model
- 8.6. Bibliographic notes
- 9. Other Generalized Linear Regressions Models
- 9.1. Negative binomial regression model
- 9.1.1. Data
- 9.1.2. Negative binomial distribution
- 9.1.3. Likelihood inference
- 9.1.4. Negative binomial logistic regression model
- 9.2. Gamma regression model
- 9.2.1. Data
- 9.2.2. Gamma distribution
- 9.2.3. Link function
- 9.2.4. Likelihood inference
- 9.2.5. Model checking
- 10. Other Generalized Regression Models
- 10.1. Weighted general linear model
- 10.1.1. Model
- 10.1.2. Weighted linear regression model as GRM
- 10.2. Weighted nonlinear regression model
- 10.2.1. Model
- 10.2.2. Weighted nonlinear regression model as GRM
- 10.3. Quality design or Taguchi model
- 10.4. Lifetime regression model
- 10.5. Cox regression model
- 10.6. Bibliographic notes
- A. Datasets
- B. Notation Used for Statistical Models
- References
- Data Index
- Author Index
- Subject Index