Optimal control applied to biological models /

Saved in:
Bibliographic Details
Author / Creator:Lenhart, Suzanne.
Imprint:Boca Raton : Chapman & Hall/CRC, c2007.
Description:xii, 261 p. : ill. ; 25 cm.
Language:English
Series:Chapman & Hall/CRC mathematical and computational biology series
Chapman and Hall/CRC mathematical & computational biology series.
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/7359362
Hidden Bibliographic Details
Other authors / contributors:Workman, John T.
ISBN:9781584886402 (alk. paper)
1584886404 (alk. paper)
Notes:Includes bibliographical references (p. [245]-257) and index.
Table of Contents:
  • Preface
  • 1. Basic Optimal Control Problems
  • 1.1. Preliminaries
  • 1.2. The Basic Problem and Necessary Conditions
  • 1.3. Pontryagin's Maximum Principle
  • 1.4. Exercises
  • 2. Existence and Other Solution Properties
  • 2.1. Existence and Uniqueness Results
  • 2.2. Interpretation of the Adjoint
  • 2.3. Principle of Optimality
  • 2.4. The Hamiltonian and Autonomous Problems
  • 2.5. Exercises
  • 3. State Conditions at the Final Time
  • 3.1. Payoff Terms
  • 3.2. States with Fixed Endpoints
  • 3.3. Exercises
  • 4. Forward-Backward Sweep Method
  • 5. Lab 1: Introductory Example
  • 6. Lab 2: Mold and Fungicide
  • 7. Lab 3: Bacteria
  • 8. Bounded Controls
  • 8.1. Necessary Conditions
  • 8.2. Numerical Solutions
  • 8.3. Exercises
  • 9. Lab 4: Bounded Case
  • 10. Lab 5: Cancer
  • 11. Lab 6: Fish Harvesting
  • 12. Optimal Control of Several Variables
  • 12.1. Necessary Conditions
  • 12.2. Linear Quadratic Regulator Problems
  • 12.3. Higher Order Differential Equations
  • 12.4. Isoperimetric Constraints
  • 12.5. Numerical Solutions
  • 12.6. Exercises
  • 13. Lab 7: Epidemic Model
  • 14. Lab 8: HIV Treatment
  • 15. Lab 9: Bear Populations
  • 16. Lab 10: Glucose Model
  • 17. Linear Dependence on the Control
  • 17.1. Bang-Bang Controls
  • 17.2. Singular Controls
  • 17.3. Exercises
  • 18. Lab 11: Timber Harvesting
  • 19. Lab 12: Bioreactor
  • 20. Free Terminal Time Problems
  • 20.1. Necessary Conditions
  • 20.2. Time Optimal Control
  • 20.3. Exercises
  • 21. Adapted Forward-Backward Sweep
  • 21.1. Secant Method
  • 21.2. One State with Fixed Endpoints
  • 21.3. Nonlinear Payoff Terms
  • 21.4. Free Terminal Time
  • 21.5. Multiple Shots
  • 21.6. Exercises
  • 22. Lab 13: Predator-Prey Model
  • 23. Discrete Time Models
  • 23.1. Necessary Conditions
  • 23.2. Systems Case
  • 23.3. Exercises
  • 24. Lab 14: Invasive Plant Species
  • 25. Partial Differential Equation Models
  • 25.1. Existence of an Optimal Control
  • 25.2. Sensitivities and Necessary Conditions
  • 25.3. Uniqueness of the Optimal Control
  • 25.4. Numerical Solutions
  • 25.5. Harvesting Example
  • 25.6. Beaver Example
  • 25.7. Predator-Prey Example
  • 25.8. Identification Example
  • 25.9. Controlling Boundary Terms
  • 25.10. Exercises
  • 26. Other Approaches and Extensions
  • References
  • Index