Identification of time-varying processes /

Saved in:
Bibliographic Details
Author / Creator:Niedźwiecki, Maciej.
Imprint:Chichester ; New York : Wiley, c2000.
Description:xiii, 324 p. : ill. ; 25 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/7367338
Hidden Bibliographic Details
ISBN:0471986291 (acid-free paper)
Notes:Includes bibliographical references (p. [309]-320) and index.
Table of Contents:
  • Preface
  • Acknowledgments
  • 1. Modeling Essentials
  • 1.1. Physical and instrumental approaches to modeling
  • 1.2. The Titius--Bode law and the method of least sqares
  • 1.3. The principle of parsimony
  • 1.4. Mathematical models of stationary processes
  • 1.4.1. Autoregressive model
  • 1.4.2. Moving average model
  • 1.4.3. Equivalence of autoregressive and moving average models
  • 1.4.4. Mixed autoregressive moving average model
  • 1.4.5. A bridge to continuous-time processes
  • 1.4.6. Models with exogenous inputs
  • 1.4.7. The shorthand notation
  • 1.5. The model-based approach to adaptive signal processing and control
  • 1.5.1. Prediction
  • 1.5.2. Predictive coding of signals
  • 1.5.3. Detection and elimination of outliers
  • 1.5.4. Equalization of communication channels
  • 1.5.5. Spectrum estimation
  • 1.5.6. Adaptive control
  • 2. Models of Nonstationary Processes
  • 2.1. The origins of time dependence
  • 2.2. Characteristics of nonstationary processes
  • 2.3. Irreducible nonstationary processes and parameter tracking
  • 2.4. Measures of tracking ability
  • 2.5. Prior knowledge in identification of nonstationary processes
  • 2.5.1. Events and auxiliary measurements
  • 2.5.2. Probabilistic models
  • 2.5.3. Deterministic models
  • 2.6. Slowly varying systems and the concept of local stationarity
  • 2.7. Rate of process time variation
  • 2.7.1. Speed of variation and sampling frequency
  • 2.7.2. Nonstationarity degree
  • 2.8. Assumptions
  • 2.8.1. Dependence among regressors
  • 2.8.2. Dependence between system variables
  • 2.8.3. Persistence of excitation
  • 2.8.4. Boundedness of system variables
  • 2.8.5. Variation of system parameters
  • 2.9. About computer simulations
  • 3. Process Segmentation
  • 3.1. Nonadaptive segmentation
  • 3.1.1. Conditions of identifiability
  • 3.1.2. Recursive least squares algorithm
  • 3.2. Adaptive segmentation
  • 3.2.1. Segmentation based on the Akaike criterion
  • 3.2.2. Segmentation based on the generalized likelihood ratio test
  • 3.3. Extension to ARMAX processes
  • 3.3.1. Iterative estimation algorithms
  • 3.3.2. Recursive estimation algorithms
  • 3.3.3. Conditions of identifiability
  • 3.3.4. Adaptive segmentation
  • Comments and extensions
  • 4. Weighted Least Squares
  • 4.1. Estimation principles
  • 4.2. Estimation windows
  • 4.3. Static characteristics of WLS estimators
  • 4.3.1. Effective window width
  • 4.3.2. Equivalent window width
  • 4.3.3. Degree of window concentration
  • 4.4. Dynamic time-domain characteristics of WLS estimators
  • 4.4.1. Impulse response associated with WLS estimators
  • 4.4.2. Variability of WLS estimators
  • 4.5. Dynamic frequency-domain characteristics of WLS estimators
  • 4.5.1. Frequency characteristics associated with WLS estimators
  • 4.5.2. Properties of associated frequency characteristics
  • 4.5.3. Estimation delay of WLS estimators
  • 4.5.4. Matching characteristics of WLS estimators
  • 4.6. The principle of uncertainty
  • 4.7. Comparison of the EWLS and SWLS approaches
  • 4.8. Technical issues
  • 4.9. Computer simulations
  • 4.10. Extension to ARMAX processes
  • Comments and extensions
  • 5. Least Mean Squares
  • 5.1. Estimation principles
  • 5.2. Convergence and stability of LMS algorithms
  • 5.2.1. Analysis for independent regressors
  • 5.2.2. Analysis for dependent regressors
  • 5.3. Static characteristics of LMS estimators
  • 5.3.1. Equivalent memory of LMS estimators
  • 5.3.2. Normalized LMS estimators
  • 5.4. Dynamic characteristics of LMS estimators
  • 5.4.1. Impulse response associated with LMS estimators
  • 5.4.2. Frequency response associated with LMS estimators
  • 5.5. Comparison of the EWLS and LMS estimators
  • 5.5.1. Initial convergence
  • 5.5.2. Tracking performance
  • 5.6. Computer simulations
  • 5.7. Extension to ARMAX processes
  • Comments and extensions
  • 6. Basis Functions
  • 6.1. Approach based on process segmentation
  • 6.1.1. Estimation principles
  • 6.1.2. Invariance under the change of coordinates
  • 6.1.3. Static characteristics of BF estimators
  • 6.1.4. Dynamic characteristics of BF estimators
  • 6.1.5. Impulse response associated with BF estimators
  • 6.1.6. Frequency response associated with BF estimators
  • 6.1.7. Properties of the associated frequency characteristics
  • 6.1.8. Comparing the matching properties of different BF estimators
  • 6.2. Weighted basis function estimation
  • 6.2.1. Estimation principles
  • 6.2.2. Recursive WBF estimators
  • 6.2.3. Static characteristics of WBF estimators
  • 6.2.4. Impulse response associated with WBF estimators
  • 6.2.5. Frequency response associated with WBF estimators
  • 6.3. Computer simulations
  • 6.4. The method of basis functions: good news or bad news?
  • Comments and extensions
  • 7. Kalman Filtering
  • 7.1. Estimation principles
  • 7.2. Estimation based on the random walk model
  • 7.3. Estimation based on the integrated random walk models
  • 7.4. Stability and convergence of the RWKF algorithm
  • 7.5. Estimation memory of the RWKF algorithm
  • 7.6. Dynamic characteristics of RWKF estimators
  • 7.6.1. Impulse response associated with RWKF estimators
  • 7.6.2. Frequency response associated with RWKF estimators
  • 7.7. Convergence and tracking performance of RWKF estimators
  • 7.7.1. Initial convergence
  • 7.7.2. Tracking performance
  • 7.8. Parameter matching using the Kalman smoothing approach
  • 7.8.1. Fixed interval smoothing
  • 7.8.2. Fixed lag smoothing
  • 7.9. Computer simulations
  • 7.10. Extension to ARMAX processes
  • Comments and extensions
  • 8. Practical Issues
  • 8.1. Numerical safeguards
  • 8.1.1. Least squares algorithms
  • 8.1.2. Gradient algorithms
  • 8.1.3. Kalman filter algorithms
  • 8.2. Optimization
  • 8.2.1. Memory optimization
  • 8.2.2. Other optimization issues
  • Comments and extensions
  • Epilogue
  • References
  • Index