User's guide to spectral sequences /

Saved in:
Bibliographic Details
Author / Creator:McCleary, John (John H.)
Imprint:Wilmington, Del. (U.S.A.) : Publish or Perish, c1985.
Description:xiii, 423 p. : ill. ; 24 cm.
Language:English
Series:Mathematics lecture series ; 12
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/737379
Hidden Bibliographic Details
ISBN:0914098217
Notes:Includes index.
Bibliography: p. 409-418.
Table of Contents:
  • Preface
  • Introduction
  • Part I. Algebra
  • 1.. An Informal Introduction
  • 1.1.. "There is a spectral sequence ..."
  • 1.2.. Lacunary phenomena
  • 1.3.. Exploiting further structure
  • 1.4.. Working backwards
  • 1.5.. Interpreting the answer
  • 2.. What is a Spectral Sequence?
  • 2.1.. Definitions and basic properties
  • 2.2.. How does a spectral sequence arise?
  • 2.3.. Spectral sequences of algebras
  • 2.4.. Algebraic applications
  • 3.. Convergence of Spectral Sequences
  • 3.1.. On convergence
  • 3.2.. Limits and colimits
  • 3.3.. Zeeman's comparison theorem
  • Part II. Topology
  • 4.. Topological Background
  • 4.1.. CW-complexes
  • 4.2.. Simplicial sets
  • 4.3.. Fibrations
  • 4.4.. Hopf algebras and the Steenrod algebra
  • 5.. The Leray-Serre spectral sequence I
  • 5.1.. Construction of the spectral sequence
  • 5.2.. Immediate applications
  • 5.3.. Appendices
  • 6.. The Leray-Serre spectral sequence II
  • 6.1.. A proof of theorem 6.1
  • 6.2.. The transgression
  • 6.3.. Classifying spaces and characteristic classes
  • 6.4.. Other constructions of the spectral sequence
  • 7.. The Eilenberg-Moore Spectral Sequence I
  • 7.1.. Differential homological algebra
  • 7.2.. Bringing in the topology
  • 7.3.. The Koszul complex
  • 7.4.. The homology of quotient spaces of group actions
  • 8.. The Eilenberg-Moore Spectral Sequence II
  • 8.1.. On homogeneous spaces
  • 8.2.. Differentials in the Eilenberg-Moore spectral sequence
  • 8.3.. Further structure
  • 8[superscript bis].. Nontrivial Fundamental Groups
  • 8[superscript bis].1.. Actions of the fundamental group
  • 8[superscript bis].2.. Homology of groups
  • 8[superscript bis].3.. Nilpotent spaces and groups
  • 9.. The Adams Spectral Sequence
  • 9.1.. Motivation: What cohomology sees
  • 9.2.. More homological algebra; the functor Ext
  • 9.3.. The spectral sequence
  • 9.4.. Other geometric applications
  • 9.5.. Computations
  • 9.6.. Further structure
  • 10.. The Bockstein spectral sequence
  • 10.1.. The Bockstein spectral sequence
  • 10.2.. Other Bockstein spectral sequences
  • Part III. Sins of Omission
  • 11.. More Spectral Sequences in Topology
  • 11.1.. Spectral sequences for mappings and spaces of mappings
  • 11.2.. Spectral sequences and spectra
  • 11.3.. Other Adams spectral sequences
  • 11.4.. Equivariant matters
  • 11.5.. Miscellanea
  • 12.. Spectral sequences in Algebra, Geometry and Analysis
  • 12.1.. Spectral sequences for rings and modules
  • 12.2.. Spectral sequences in geometry
  • 12.3.. Spectral sequences in algebraic K-theory
  • 12.4.. Derived categories
  • Bibliography
  • Symbol Index
  • Index