Computational methods for inverse problems /
Saved in:
Author / Creator: | Vogel, Curtis R. |
---|---|
Imprint: | Philadelphia : SIAM, c2002. |
Description: | xvi, 183 p. : ill. ; 26 cm. |
Language: | English |
Series: | Frontiers in applied mathematics ; 23 |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/7408461 |
Table of Contents:
- Foreword
- Preface
- 1. Introduction
- 1.1. An Illustrative Example
- 1.2. Regularization by Filtering
- 1.2.1. A Deterministic Error Analysis
- 1.2.2. Rates of Convergence
- 1.2.3. A Posteriori Regularization Parameter Selection
- 1.3. Variational Regularization Methods
- 1.4. Iterative Regularization Methods
- Exercises
- 2. Analytical Tools
- 2.1. Ill-Posedness and Regularization
- 2.1.1. Compact Operators, Singular Systems, and the SVD
- 2.1.2. Least Squares Solutions and the Pseudo-Inverse
- 2.2. Regularization Theory
- 2.3. Optimization Theory
- 2.4. Generalized Tikhonov Regularization
- 2.4.1. Penalty Functionals
- 2.4.2. Data Discrepancy Functionals
- 2.4.3. Some Analysis
- Exercises
- 3. Numerical Optimization Tools
- 3.1. The Steepest Descent Method
- 3.2. The Conjugate Gradient Method
- 3.2.1. Preconditioning
- 3.2.2. Nonlinear CG Method
- 3.3. Newton's Method
- 3.3.1. Trust Region Globalization of Newton's Method
- 3.3.2. The BFGS Method
- 3.4. Inexact Line Search
- Exercises
- 4. Statistical Estimation Theory
- 4.1. Preliminary Definitions and Notation
- 4.2. Maximum Likelihood Estimation
- 4.3. Bayesian Estimation
- 4.4. Linear Least Squares Estimation
- 4.4.1. Best Linear Unbiased Estimation
- 4.4.2. Minimum Variance Linear Estimation
- 4.5. The EM Algorithm
- 4.5.1. An Illustrative Example
- Exercises
- 5. Image Deblurring
- 5.1. A Mathematical Model for Image Blurring
- 5.1.1. A Two-Dimensional Test Problem
- 5.2. Computational Methods for Toeplitz Systems
- 5.2.1. Discrete Fourier Transform and Convolution
- 5.2.2. The FFT Algorithm
- 5.2.3. Toeplitz and Circulant Matrices
- 5.2.4. Best Circulant Approximation
- 5.2.5. Block Toeplitz and Block Circulant Matrices
- 5.3. Fourier-Based Deblurring Methods
- 5.3.1. Direct Fourier Inversion
- 5.3.2. CG for Block Toeplitz Systems
- 5.3.3. Block Circulant Preconditioners
- 5.3.4. A Comparison of Block Circulant Preconditioners
- 5.4. Multilevel Techniques
- Exercises
- 6. Parameter Identification
- 6.1. An Abstract Framework
- 6.1.1. Gradient Computations
- 6.1.2. Adjoint, or Costate, Methods
- 6.1.3. Hessian Computations
- 6.1.4. Gauss--Newton Hessian Approximation
- 6.2. A One-Dimensional Example
- 6.3. A Convergence Result
- Exercises
- 7. Regularization Parameter Selection Methods
- 7.1. The Unbiased Predictive Risk Estimator Method
- 7.1.1. Implementation of the UPRE Method
- 7.1.2. Randomized Trace Estimation
- 7.1.3. A Numerical Illustration of Trace Estimation
- 7.1.4. Nonlinear Variants of UPRE
- 7.2. Generalized Cross Validation
- 7.2.1. A Numerical Comparison of UPRE and GCV
- 7.3. The Discrepancy Principle
- 7.3.1. Implementation of the Discrepancy Principle
- 7.4. The L-Curve Method
- 7.4.1. A Numerical Illustration of the L-Curve Method
- 7.5. Other Regularization Parameter Selection Methods
- 7.6. Analysis of Regularization Parameter Selection Methods
- 7.6.1. Model Assumptions and Preliminary Results
- 7.6.2. Estimation and Predictive Errors for TSVD
- 7.6.3. Estimation and Predictive Errors for Tikhonov Regularization
- 7.6.4. Analysis of the Discrepancy Principle
- 7.6.5. Analysis of GCV
- 7.6.6. Analysis of the L-Curve Method
- 7.7. A Comparison of Methods
- Exercises
- 8. Total Variation Regularization
- 8.1. Motivation
- 8.2. Numerical Methods for Total Variation
- 8.2.1. A One-Dimensional Discretization
- 8.2.2. A Two-Dimensional Discretization
- 8.2.3. Steepest Descent and Newton's Method for Total Variation
- 8.2.4. Lagged Diffusivity Fixed Point Iteration
- 8.2.5. A Primal-Dual Newton Method
- 8.2.6. Other Methods
- 8.3. Numerical Comparisons
- 8.3.1. Results for a One-Dimensional Test Problem
- 8.3.2. Two-Dimensional Test Results
- 8.4. Mathematical Analysis of Total Variation
- 8.4.1. Approximations to the TV Functional
- Exercises
- 9. Nonnegativity Constraints
- 9.1. An Illustrative Example
- 9.2. Theory of Constrained Optimization
- 9.2.1. Nonnegativity Constraints
- 9.3. Numerical Methods for Nonnegatively Constrained Minimization
- 9.3.1. The Gradient Projection Method
- 9.3.2. A Projected Newton Method
- 9.3.3. A Gradient Projection-Reduced Newton Method
- 9.3.4. A Gradient Projection-CG Method
- 9.3.5. Other Methods
- 9.4. Numerical Test Results
- 9.4.1. Results for One-Dimensional Test Problems
- 9.4.2. Results for a Two-Dimensional Test Problem
- 9.5. Iterative Nonnegative Regularization Methods
- 9.5.1. Richardson--Lucy Iteration
- 9.5.2. A Modified Steepest Descent Algorithm
- Exercises
- Bibliography