Quantum mechanics : its early development and the road to entanglement /
Saved in:
Author / Creator: | Steward, E. G. (Edward G.), 1923- |
---|---|
Imprint: | London : Imperial College Press ; Singapore ; Hackensack, NJ : Distributed by World Scientific Pub., c2008. |
Description: | xxi, 257 p. : ill. ; 23 cm. |
Language: | English |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/7450731 |
Table of Contents:
- Acknowledgements
- Preface
- 1. Setting the Scene
- 1.1. Introduction
- 1.2. Light and Heat: Kirchhoff's 'Black-body Radiation'
- 1.3. Kirchhoff's Work on Optical Spectra
- 1.4. Planck's Route to Tackling the Black-body Radiation Problem
- 1.5. Light and the Aether
- 1.6. Post 1900
- 2. Light: The 'Aether' and the Special Theory of Relativity
- 2.1. Introduction
- 2.2. The 'Aether'
- 2.2.1. The stellar 'aberration of light'
- 2.2.2. Arago's experiments
- 2.2.3. Fresnel's 'drag' mechanism (1818)
- 2.2.4. The 1887 Michelson-Morley experiment
- 2.2.5. The FitzGerald contraction
- 2.2.6. The Lorentz contraction
- 2.3. Einstein's Special Theory of Relativity (1905)
- 2.3.1. Introduction: reference frame transformations
- 2.3.2. Energy and momentum
- 3. Thermal Radiation and Planck's 'Energy Elements'
- 3.1. Introduction
- 3.2. Planck and 'Energy Elements'
- 3.2.1. Introduction: background
- 3.2.2. Stage 1
- 3.2.3. Stage 2: Planck's final distribution function
- 3.2.4. Summary of the main features of Planck's final derivation of the distribution function
- 4. Einstein and the Quantum
- 4.1. Introduction
- 4.2. Overview
- 4.3. Volume Dependence of Entropy: Light Quanta and the Photoelectric Effect
- 4.4. Fluctuations
- 4.4.1. Energy fluctuations
- 4.4.2. Momentum fluctuations
- 4.5. Statistics: Planck's Radiation Formula and Specific Heat Theory
- 5. The Quantum in the Atom: Optical Spectra
- 5.1. Introduction
- 5.2. Classical Mechanics of an Electron in a Circular Atomic Orbit
- 5.3. The Quantum is Introduced: The Correspondence Principle
- 6. Einstein's Transition Probabilities: Bohr's Theory and Planck's Law
- 7. Wave Mechanics
- 7.1. Introduction
- 7.2. de Broglie's Matter Waves
- 7.2.1. Freely moving particles
- 7.2.2. Orbital electrons as waves
- 7.3. Schrodinger's Wave Mechanics
- 7.3.1. Introduction
- 7.3.2. Background role of Einstein's Gas Theory
- 7.3.3. Classical wave optics and geometrical optics compared: a note
- 7.3.4. Fermat's principle of least time
- 7.3.5. Maupertuis's principle of least action
- 7.3.6. Hamilton's mechanics and Schrodinger's wave mechanics
- 7.3.7. Schrodinger's time-independent wave equation of 1926
- 7.3.8. Schrodinger's time-dependent equation
- 7.3.9. The probabilistic interpretation of the wave equation
- 7.3.10. Operator representations
- 7.4. Relativistic Wave Equation: The Dirac Equation
- 8. Matrix Mechanics
- 8.1. Introduction
- 8.2. Heisenberg's Approach
- 8.2.1. Heisenberg invokes the correspondence principle
- 8.2.2. Outside the range of the correspondence principle
- 8.3. The Reconciliation of Matrix Mechanics and Wave Mechanics
- 8.4. Dirac and Matrix Mechanics
- 9. Complementarity, the Uncertainty Principle, and the Copenhagen Interpretation
- 9.1. Introduction
- 9.2. Heisenberg's Uncertainty Principle
- 9.3. The Como Meeting and the 'Copenhagen Interpretation'
- 9.4. Copenhagen Interpretation Challenged
- 9.4.1. Background
- 9.4.2. Einstein's objections
- 10. Indeterminacy and Entanglement (Sara M. McMurry)
- 10.1. Introduction
- 10.2. Entangled Pairs of Particles and Bell's Inequality
- 10.2.1. Photon polarisation and indeterminacy
- 10.2.2. An EPR experiment with photons
- 10.2.3. Hidden variables and Bell's Inequality
- 10.2.4. Experimental tests of Bell's Inequality
- 10.3. Quantum Information Theory
- 10.3.1. Quantum computing
- 10.3.2. Quantum cryptography
- 10.3.3. Quantum cloning and quantum teleportation
- 10.4. The Quantum Measurement Problem
- 10.4.1. Schrodinger's Cat and the collapse of the wave function
- 10.5. Further Reading
- Appendices
- A. Entropy
- B. Classical Thermodynamics; Kinetic Theory; Statistical Mechanics; Statistical Thermodynamics
- C. Phase Space
- D. A Note on Rayleigh's Radiation Formula
- E. Debye: Specific Heat Theory of Solids and Derivation of Planck's Radiation Formula
- F. The Photoelectric Effect
- G. The General Wave Equation; Wave Groups; Dispersion
- H. The Harmonic and Anharmonic Oscillator
- I. Chronology of Main Developments Leading to the Copenhagen Interpretation
- J. Biographical Notes: The Central Characters
- Bibliography
- References
- Index