Quantum mechanics : its early development and the road to entanglement /

Saved in:
Bibliographic Details
Author / Creator:Steward, E. G. (Edward G.), 1923-
Imprint:London : Imperial College Press ; Singapore ; Hackensack, NJ : Distributed by World Scientific Pub., c2008.
Description:xxi, 257 p. : ill. ; 23 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/7450731
Hidden Bibliographic Details
ISBN:1860949789 (pbk.)
9781860949784 (pbk.)
1860949770
9781860949777
Notes:Includes bibliographical references (p. 231-245) and index.
Table of Contents:
  • Acknowledgements
  • Preface
  • 1. Setting the Scene
  • 1.1. Introduction
  • 1.2. Light and Heat: Kirchhoff's 'Black-body Radiation'
  • 1.3. Kirchhoff's Work on Optical Spectra
  • 1.4. Planck's Route to Tackling the Black-body Radiation Problem
  • 1.5. Light and the Aether
  • 1.6. Post 1900
  • 2. Light: The 'Aether' and the Special Theory of Relativity
  • 2.1. Introduction
  • 2.2. The 'Aether'
  • 2.2.1. The stellar 'aberration of light'
  • 2.2.2. Arago's experiments
  • 2.2.3. Fresnel's 'drag' mechanism (1818)
  • 2.2.4. The 1887 Michelson-Morley experiment
  • 2.2.5. The FitzGerald contraction
  • 2.2.6. The Lorentz contraction
  • 2.3. Einstein's Special Theory of Relativity (1905)
  • 2.3.1. Introduction: reference frame transformations
  • 2.3.2. Energy and momentum
  • 3. Thermal Radiation and Planck's 'Energy Elements'
  • 3.1. Introduction
  • 3.2. Planck and 'Energy Elements'
  • 3.2.1. Introduction: background
  • 3.2.2. Stage 1
  • 3.2.3. Stage 2: Planck's final distribution function
  • 3.2.4. Summary of the main features of Planck's final derivation of the distribution function
  • 4. Einstein and the Quantum
  • 4.1. Introduction
  • 4.2. Overview
  • 4.3. Volume Dependence of Entropy: Light Quanta and the Photoelectric Effect
  • 4.4. Fluctuations
  • 4.4.1. Energy fluctuations
  • 4.4.2. Momentum fluctuations
  • 4.5. Statistics: Planck's Radiation Formula and Specific Heat Theory
  • 5. The Quantum in the Atom: Optical Spectra
  • 5.1. Introduction
  • 5.2. Classical Mechanics of an Electron in a Circular Atomic Orbit
  • 5.3. The Quantum is Introduced: The Correspondence Principle
  • 6. Einstein's Transition Probabilities: Bohr's Theory and Planck's Law
  • 7. Wave Mechanics
  • 7.1. Introduction
  • 7.2. de Broglie's Matter Waves
  • 7.2.1. Freely moving particles
  • 7.2.2. Orbital electrons as waves
  • 7.3. Schrodinger's Wave Mechanics
  • 7.3.1. Introduction
  • 7.3.2. Background role of Einstein's Gas Theory
  • 7.3.3. Classical wave optics and geometrical optics compared: a note
  • 7.3.4. Fermat's principle of least time
  • 7.3.5. Maupertuis's principle of least action
  • 7.3.6. Hamilton's mechanics and Schrodinger's wave mechanics
  • 7.3.7. Schrodinger's time-independent wave equation of 1926
  • 7.3.8. Schrodinger's time-dependent equation
  • 7.3.9. The probabilistic interpretation of the wave equation
  • 7.3.10. Operator representations
  • 7.4. Relativistic Wave Equation: The Dirac Equation
  • 8. Matrix Mechanics
  • 8.1. Introduction
  • 8.2. Heisenberg's Approach
  • 8.2.1. Heisenberg invokes the correspondence principle
  • 8.2.2. Outside the range of the correspondence principle
  • 8.3. The Reconciliation of Matrix Mechanics and Wave Mechanics
  • 8.4. Dirac and Matrix Mechanics
  • 9. Complementarity, the Uncertainty Principle, and the Copenhagen Interpretation
  • 9.1. Introduction
  • 9.2. Heisenberg's Uncertainty Principle
  • 9.3. The Como Meeting and the 'Copenhagen Interpretation'
  • 9.4. Copenhagen Interpretation Challenged
  • 9.4.1. Background
  • 9.4.2. Einstein's objections
  • 10. Indeterminacy and Entanglement (Sara M. McMurry)
  • 10.1. Introduction
  • 10.2. Entangled Pairs of Particles and Bell's Inequality
  • 10.2.1. Photon polarisation and indeterminacy
  • 10.2.2. An EPR experiment with photons
  • 10.2.3. Hidden variables and Bell's Inequality
  • 10.2.4. Experimental tests of Bell's Inequality
  • 10.3. Quantum Information Theory
  • 10.3.1. Quantum computing
  • 10.3.2. Quantum cryptography
  • 10.3.3. Quantum cloning and quantum teleportation
  • 10.4. The Quantum Measurement Problem
  • 10.4.1. Schrodinger's Cat and the collapse of the wave function
  • 10.5. Further Reading
  • Appendices
  • A. Entropy
  • B. Classical Thermodynamics; Kinetic Theory; Statistical Mechanics; Statistical Thermodynamics
  • C. Phase Space
  • D. A Note on Rayleigh's Radiation Formula
  • E. Debye: Specific Heat Theory of Solids and Derivation of Planck's Radiation Formula
  • F. The Photoelectric Effect
  • G. The General Wave Equation; Wave Groups; Dispersion
  • H. The Harmonic and Anharmonic Oscillator
  • I. Chronology of Main Developments Leading to the Copenhagen Interpretation
  • J. Biographical Notes: The Central Characters
  • Bibliography
  • References
  • Index