Para-differential calculus and applications to the Cauchy problem for nonlinear systems /

Saved in:
Bibliographic Details
Author / Creator:Métivier, Guy.
Imprint:[Pisa, Italy] : Edizioni della Normale, c2008.
Description:xi, 140 p. ; 24 cm.
Language:English
Series:CRM series ; 5
CRM series (Pisa, Italy) ; 5.
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/7629653
Hidden Bibliographic Details
ISBN:9788876423291 (pbk.)
887642329X (pbk.)
8876423291
Notes:"These notes originate from a graduate course given at the University of Pisa during the spring semester 2007"--Pref.
Includes bibliographical references (p. [137]-138).
Other form:Online version: Métivier, Guy. Para-differential calculus and applications to the Cauchy problem for nonlinear systems. [Pisa, Italy] : Edizioni della Normale, c2008
Table of Contents:
  • Preface
  • Part I. Introduction to systems
  • 1. Notations and examples
  • 1.1. First order systems
  • 1.1.1. Notations
  • 1.1.2. Plane waves
  • 1.1.3. The symbol
  • 1.2. Examples
  • 1.2.1. Gas dynamics
  • 1.2.2. Maxwell's equations
  • 1.2.3. Magneto-hydrodynamics
  • 1.2.4. Elasticity
  • 2. Constant coefficient systems. Fourier synthesis
  • 2.1. The method
  • 2.1.1. The Fourier transform
  • 2.1.2. Solving the evolution equation (2.1)
  • 2.2. Examples
  • 2.2.1. The heat equation
  • 2.2.2. Schrodinger equation
  • 2.2.3. The wave equation
  • 2.3. First order systems: hyperbolicity
  • 2.3.1. The general formalism
  • 2.3.2. Strongly hyperbolic systems
  • 2.3.3. Symmetric hyperbolic systems
  • 2.3.4. Smoothly diagonalizable systems, hyperbolic systems with constant multiplicities
  • 2.3.5. Existence and uniqueness for strongly hyperbolic systems
  • 2.4. Higher order systems
  • 2.4.1. Systems of Schrodinger equations
  • 2.4.2. Elasticity
  • 3. The method of symmetrizers
  • 3.1. The method
  • 3.2. The constant coefficients case
  • 3.2.1. Fourier multipliers
  • 3.2.2. The first order case
  • 3.3. Hyperbolic symmetric systems
  • 3.3.1. Assumptions
  • 3.3.2. Existence and uniqueness
  • 3.3.3. Energy estimates
  • Part II. The para-differential calculus
  • 4. Pseudo-differential operators
  • 4.1. Fourier analysis of functional spaces
  • 4.1.1. Smoothing and approximation
  • 4.1.2. The Littlewood-Paley decomposition in H[superscript s]
  • 4.1.3. The Littlewood-Paley decomposition in Holder spaces
  • 4.2. The general framework of pseudo-differential operators
  • 4.2.1. Introduction
  • 4.2.2. Operators with symbols in the Schwartz class
  • 4.2.3. Pseudo-differential operators of type (1, 1)
  • 4.2.4. Spectral localization
  • 4.3. Action of pseudo-differential operators in Sobolev spaces
  • 4.3.1. Stein's theorem for operators of type (1, 1)
  • 4.3.2. The case of symbols satisfying spectral conditions
  • 5. Para-differential operators
  • 5.1. Definition of para-differential operators
  • 5.1.1. Symbols with limited spatial smoothness
  • 5.1.2. Smoothing symbols
  • 5.1.3. Operators
  • 5.2. Paraproducts
  • 5.2.1. Definition
  • 5.2.2. Products
  • 5.2.3. Para-linearization 1
  • 5.2.4. Para-linearization 2
  • 6. Symbolic calculus
  • 6.1. Composition
  • 6.1.1. Statement of the result
  • 6.1.2. Proof of the main theorem
  • 6.1.3. A quantitative version
  • 6.2. Adjoints
  • 6.2.1. The main result
  • 6.3. Applications
  • 6.3.1. Elliptic estimates
  • 6.3.2. Garding's inequality
  • 6.4. Pluri-homogeneous calculus
  • Part III. Applications
  • 7. Nonlinear hyperbolic systems
  • 7.1. The L[superscript 2] linear theory
  • 7.1.1. Statement of the result
  • 7.1.2. Paralinearisation
  • 7.1.3. Symmetrizers
  • 7.1.4. The basic L[superscript 2] estimate
  • 7.1.5. Weak= Strong and uniqueness
  • 7.1.6. Existence
  • 7.2. The H[superscript s] linear theory
  • 7.2.1. Statement of the result
  • 7.2.2. Paralinearisation
  • 7.2.3. Estimates
  • 7.2.4. Smoothing effect in time
  • 7.2.5. Existence
  • 7.3. Quasi-linear systems
  • 7.3.1. Statement of the results
  • 7.3.2. Local in time existence
  • 7.3.3. Blow up criterion
  • 8. Systems of Schrodinger equations
  • 8.1. Introduction
  • 8.1.1. Decoupling
  • 8.1.2. Further reduction
  • 8.2. Energy estimates for linear systems
  • 8.2.1. The results
  • 8.2.2. Proof of Theorem 8.2.4
  • 8.3. Existence, uniqueness and smoothness for linear problems
  • 8.3.1. L[superscript 2] existence
  • 8.3.2. H[superscript s] existence
  • 8.4. Nonlinear problems
  • 8.4.1. Systems with quasilinear first order part
  • 8.4.2. Examples and applications
  • References