Analysis, geometry, and modeling in finance : advanced methods in option pricing /

Saved in:
Bibliographic Details
Author / Creator:Henry-Labordè€re, Pierre.
Imprint:Boca Raton : CRC Press, c2009.
Description:383 p. : ill. ; 25 cm.
Language:English
Series:Chapman & Hall/CRC financial mathematics series
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/7643776
Hidden Bibliographic Details
ISBN:9781420086997 (alk. paper)
1420086995 (alk. paper)
Notes:"A Chapman & Hall book."
Includes bibliographical references (p. 369-378) and index.
Table of Contents:
  • 1. Introduction
  • 2. A Brief Course in Financial Mathematics
  • 2.1. Derivative products
  • 2.2. Back to basics
  • 2.2.1. Sigma-algebra
  • 2.2.2. Probability measure
  • 2.2.3. Random variables
  • 2.2.4. Conditional probability
  • 2.2.5. Radon-Nikodym derivative
  • 2.3. Stochastic processes
  • 2.4. Ito process
  • 2.4.1. Stochastic integral
  • 2.4.2. Ito's lemma
  • 2.4.3. Stochastic differential equations
  • 2.5. Market models
  • 2.6. Pricing and no-arbitrage
  • 2.6.1. Arbitrage
  • 2.6.2. Self-financing portfolio
  • 2.7. Feynman-Kac's theorem
  • 2.8. Change of numeraire
  • 2.9. Hedging portfolio
  • 2.10. Building market models in practice
  • 2.10.1. Equity asset case
  • 2.10.2. Foreign exchange rate case
  • 2.10.3. Fixed income rate case
  • 2.10.4. Commodity asset case
  • 2.11. Problems
  • 3. Smile Dynamics and Pricing of Exotic Options
  • 3.1. Implied volatility
  • 3.2. Static replication and pricing of European option
  • 3.3. Forward starting options and dynamics of the implied volatility
  • 3.3.1. Sticky rules
  • 3.3.2. Forward-start options
  • 3.3.3. Cliquet options
  • 3.3.4. Napoleon options
  • 3.4. Interest rate instruments
  • 3.4.1. Bond
  • 3.4.2. Swap
  • 3.4.3. Swaption
  • 3.4.4. Convexity adjustment and CMS option
  • 3.5. Problems
  • 4. Differential Geometry and Heat Kernel Expansion
  • 4.1. Multi-dimensional Kolmogorov equation
  • 4.1.1. Forward Kolmogorov equation
  • 4.1.2. Backward Kolmogorov's equation
  • 4.2. Notions in differential geometry
  • 4.2.1. Manifold
  • 4.2.2. Maps between manifolds
  • 4.2.3. Tangent space
  • 4.2.4. Metric
  • 4.2.5. Cotangent space
  • 4.2.6. Tensors
  • 4.2.7. Vector bundles
  • 4.2.8. Connection on a vector bundle
  • 4.2.9. Parallel gauge transport
  • 4.2.10. Geodesics
  • 4.2.11. Curvature of a connection
  • 4.2.12. Integration on a Riemannian manifold
  • 4.3. Heat kernel on a Riemannian manifold
  • 4.4. Abelian connection and Stratonovich's calculus
  • 4.5. Gauge transformation
  • 4.6. Heat kernel expansion
  • 4.7. Hypo-elliptic operator and Hormander's theorem
  • 4.7.1. Hypo-elliptic operator
  • 4.7.2. Hormander's theorem
  • 4.8. Problems
  • 5. Local Volatility Models and Geometry of Real Curves
  • 5.1. Separable local volatility model
  • 5.1.1. Weak solution
  • 5.1.2. Non-explosion and martingality
  • 5.1.3. Real curve
  • 5.2. Local volatility model
  • 5.2.1. Dupire's formula
  • 5.2.2. Local volatility and asymptotic implied volatility
  • 5.3. Implied volatility from local volatility
  • 6. Stochastic Volatility Models and Geometry of Complex Curves
  • 6.1. Stochastic volatility models and Riemann surfaces
  • 6.1.1. Stochastic volatility models
  • 6.1.2. Riemann surfaces
  • 6.1.3. Associated local volatility model
  • 6.1.4. First-order asymptotics of implied volatility
  • 6.2. Put-Call duality
  • 6.3. [lambda]-SABR model and hyperbolic geometry
  • 6.3.1. [lambda]-SABR model
  • 6.3.2. Asymptotic implied volatility for the [lambda]-SABR
  • 6.3.3. Derivation
  • 6.4. Analytical solution for the normal and log-normal SABR model
  • 6.4.1. Normal SABR model and Laplacian on H[superscript 2]
  • 6.4.2. Log-normal SABR model and Laplacian on H[superscript 3]
  • 6.5. Heston model: a toy black hole
  • 6.5.1. Analytical call option
  • 6.5.2. Asymptotic implied volatility
  • 6.6. Problems
  • 7. Multi-Asset European Option and Flat Geometry
  • 7.1. Local volatility models and flat geometry
  • 7.2. Basket option
  • 7.2.1. Basket local volatility
  • 7.2.2. Second moment matching approximation
  • 7.3. Collaterized Commodity Obligation
  • 7.3.1. Zero correlation
  • 7.3.2. Non-zero correlation
  • 7.3.3. Implementation
  • 8. Stochastic Volatility Libor Market Models and Hyperbolic Geometry
  • 8.1. Introduction
  • 8.2. Libor market models
  • 8.2.1. Calibration
  • 8.2.2. Pricing with a Libor market model
  • 8.3. Markovian realization and Frobenius theorem
  • 8.4. A generic SABR-LMM model
  • 8.5. Asymptotic swaption smile
  • 8.5.1. First step: deriving the ELV
  • 8.5.2. Connection
  • 8.5.3. Second step: deriving an implied volatility smile
  • 8.5.4. Numerical tests and comments
  • 8.6. Extensions
  • 8.7. Problems
  • 9. Solvable Local and Stochastic Volatility Models
  • 9.1. Introduction
  • 9.2. Reduction method
  • 9.3. Crash course in functional analysis
  • 9.3.1. Linear operator on Hilbert space
  • 9.3.2. Spectrum
  • 9.3.3. Spectral decomposition
  • 9.4. 1D time-homogeneous diffusion models
  • 9.4.1. Reduction method
  • 9.4.2. Solvable (super)potentials
  • 9.4.3. Hierarchy of solvable diffusion processes
  • 9.4.4. Natanzon (super)potentials
  • 9.5. Gauge-free stochastic volatility models
  • 9.6. Laplacian heat kernel and Schrodinger equations
  • 9.7. Problems
  • 10. Schrodinger Semigroups Estimates and Implied Volatility Wings
  • 10.1. Introduction
  • 10.2. Wings asymptotics
  • 10.3. Local volatility model and Schrodinger equation
  • 10.3.1. Separable local volatility model
  • 10.3.2. General local volatility model
  • 10.4. Gaussian estimates of Schrodinger semigroups
  • 10.4.1. Time-homogeneous scalar potential
  • 10.4.2. Time-dependent scalar potential
  • 10.5. Implied volatility at extreme strikes
  • 10.5.1. Separable local volatility model
  • 10.5.2. Local volatility model
  • 10.6. Gauge-free stochastic volatility models
  • 10.7. Problems
  • 11. Analysis on Wiener Space with Applications
  • 11.1. Introduction
  • 11.2. Functional integration
  • 11.2.1. Functional space
  • 11.2.2. Cylindrical functions
  • 11.2.3. Feynman path integral
  • 11.3. Functional-Malliavin derivative
  • 11.4. Skorohod integral and Wick product
  • 11.4.1. Skorohod integral
  • 11.4.2. Wick product
  • 11.5. Fock space and Wiener chaos expansion
  • 11.5.1. Ornstein-Uhlenbeck operator
  • 11.6. Applications
  • 11.6.1. Convexity adjustment
  • 11.6.2. Sensitivities
  • 11.6.3. Local volatility of stochastic volatility models
  • 11.7. Problems
  • 12. Portfolio Optimization and Bellman-Hamilton-Jacobi Equation
  • 12.1. Introduction
  • 12.2. Hedging in an incomplete market
  • 12.3. The feedback effect of hedging on price
  • 12.4. Non-linear Black-Scholes PDE
  • 12.5. Optimized portfolio of a large trader
  • A. Saddle-Point Method
  • B. Monte-Carlo Methods and Hopf Algebra
  • B.1. Introduction
  • B.1.1. Monte Carlo and Quasi Monte Carlo
  • B.1.2. Discretization schemes
  • B.1.3. Taylor-Stratonovich expansion
  • B.2. Algebraic Setting
  • B.2.1. Hopf algebra
  • B.2.2. Chen series
  • B.3. Yamato's theorem
  • References
  • Index