Analysis, geometry, and modeling in finance : advanced methods in option pricing /
Saved in:
Author / Creator: | Henry-Labordè€re, Pierre. |
---|---|
Imprint: | Boca Raton : CRC Press, c2009. |
Description: | 383 p. : ill. ; 25 cm. |
Language: | English |
Series: | Chapman & Hall/CRC financial mathematics series |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/7643776 |
Table of Contents:
- 1. Introduction
- 2. A Brief Course in Financial Mathematics
- 2.1. Derivative products
- 2.2. Back to basics
- 2.2.1. Sigma-algebra
- 2.2.2. Probability measure
- 2.2.3. Random variables
- 2.2.4. Conditional probability
- 2.2.5. Radon-Nikodym derivative
- 2.3. Stochastic processes
- 2.4. Ito process
- 2.4.1. Stochastic integral
- 2.4.2. Ito's lemma
- 2.4.3. Stochastic differential equations
- 2.5. Market models
- 2.6. Pricing and no-arbitrage
- 2.6.1. Arbitrage
- 2.6.2. Self-financing portfolio
- 2.7. Feynman-Kac's theorem
- 2.8. Change of numeraire
- 2.9. Hedging portfolio
- 2.10. Building market models in practice
- 2.10.1. Equity asset case
- 2.10.2. Foreign exchange rate case
- 2.10.3. Fixed income rate case
- 2.10.4. Commodity asset case
- 2.11. Problems
- 3. Smile Dynamics and Pricing of Exotic Options
- 3.1. Implied volatility
- 3.2. Static replication and pricing of European option
- 3.3. Forward starting options and dynamics of the implied volatility
- 3.3.1. Sticky rules
- 3.3.2. Forward-start options
- 3.3.3. Cliquet options
- 3.3.4. Napoleon options
- 3.4. Interest rate instruments
- 3.4.1. Bond
- 3.4.2. Swap
- 3.4.3. Swaption
- 3.4.4. Convexity adjustment and CMS option
- 3.5. Problems
- 4. Differential Geometry and Heat Kernel Expansion
- 4.1. Multi-dimensional Kolmogorov equation
- 4.1.1. Forward Kolmogorov equation
- 4.1.2. Backward Kolmogorov's equation
- 4.2. Notions in differential geometry
- 4.2.1. Manifold
- 4.2.2. Maps between manifolds
- 4.2.3. Tangent space
- 4.2.4. Metric
- 4.2.5. Cotangent space
- 4.2.6. Tensors
- 4.2.7. Vector bundles
- 4.2.8. Connection on a vector bundle
- 4.2.9. Parallel gauge transport
- 4.2.10. Geodesics
- 4.2.11. Curvature of a connection
- 4.2.12. Integration on a Riemannian manifold
- 4.3. Heat kernel on a Riemannian manifold
- 4.4. Abelian connection and Stratonovich's calculus
- 4.5. Gauge transformation
- 4.6. Heat kernel expansion
- 4.7. Hypo-elliptic operator and Hormander's theorem
- 4.7.1. Hypo-elliptic operator
- 4.7.2. Hormander's theorem
- 4.8. Problems
- 5. Local Volatility Models and Geometry of Real Curves
- 5.1. Separable local volatility model
- 5.1.1. Weak solution
- 5.1.2. Non-explosion and martingality
- 5.1.3. Real curve
- 5.2. Local volatility model
- 5.2.1. Dupire's formula
- 5.2.2. Local volatility and asymptotic implied volatility
- 5.3. Implied volatility from local volatility
- 6. Stochastic Volatility Models and Geometry of Complex Curves
- 6.1. Stochastic volatility models and Riemann surfaces
- 6.1.1. Stochastic volatility models
- 6.1.2. Riemann surfaces
- 6.1.3. Associated local volatility model
- 6.1.4. First-order asymptotics of implied volatility
- 6.2. Put-Call duality
- 6.3. [lambda]-SABR model and hyperbolic geometry
- 6.3.1. [lambda]-SABR model
- 6.3.2. Asymptotic implied volatility for the [lambda]-SABR
- 6.3.3. Derivation
- 6.4. Analytical solution for the normal and log-normal SABR model
- 6.4.1. Normal SABR model and Laplacian on H[superscript 2]
- 6.4.2. Log-normal SABR model and Laplacian on H[superscript 3]
- 6.5. Heston model: a toy black hole
- 6.5.1. Analytical call option
- 6.5.2. Asymptotic implied volatility
- 6.6. Problems
- 7. Multi-Asset European Option and Flat Geometry
- 7.1. Local volatility models and flat geometry
- 7.2. Basket option
- 7.2.1. Basket local volatility
- 7.2.2. Second moment matching approximation
- 7.3. Collaterized Commodity Obligation
- 7.3.1. Zero correlation
- 7.3.2. Non-zero correlation
- 7.3.3. Implementation
- 8. Stochastic Volatility Libor Market Models and Hyperbolic Geometry
- 8.1. Introduction
- 8.2. Libor market models
- 8.2.1. Calibration
- 8.2.2. Pricing with a Libor market model
- 8.3. Markovian realization and Frobenius theorem
- 8.4. A generic SABR-LMM model
- 8.5. Asymptotic swaption smile
- 8.5.1. First step: deriving the ELV
- 8.5.2. Connection
- 8.5.3. Second step: deriving an implied volatility smile
- 8.5.4. Numerical tests and comments
- 8.6. Extensions
- 8.7. Problems
- 9. Solvable Local and Stochastic Volatility Models
- 9.1. Introduction
- 9.2. Reduction method
- 9.3. Crash course in functional analysis
- 9.3.1. Linear operator on Hilbert space
- 9.3.2. Spectrum
- 9.3.3. Spectral decomposition
- 9.4. 1D time-homogeneous diffusion models
- 9.4.1. Reduction method
- 9.4.2. Solvable (super)potentials
- 9.4.3. Hierarchy of solvable diffusion processes
- 9.4.4. Natanzon (super)potentials
- 9.5. Gauge-free stochastic volatility models
- 9.6. Laplacian heat kernel and Schrodinger equations
- 9.7. Problems
- 10. Schrodinger Semigroups Estimates and Implied Volatility Wings
- 10.1. Introduction
- 10.2. Wings asymptotics
- 10.3. Local volatility model and Schrodinger equation
- 10.3.1. Separable local volatility model
- 10.3.2. General local volatility model
- 10.4. Gaussian estimates of Schrodinger semigroups
- 10.4.1. Time-homogeneous scalar potential
- 10.4.2. Time-dependent scalar potential
- 10.5. Implied volatility at extreme strikes
- 10.5.1. Separable local volatility model
- 10.5.2. Local volatility model
- 10.6. Gauge-free stochastic volatility models
- 10.7. Problems
- 11. Analysis on Wiener Space with Applications
- 11.1. Introduction
- 11.2. Functional integration
- 11.2.1. Functional space
- 11.2.2. Cylindrical functions
- 11.2.3. Feynman path integral
- 11.3. Functional-Malliavin derivative
- 11.4. Skorohod integral and Wick product
- 11.4.1. Skorohod integral
- 11.4.2. Wick product
- 11.5. Fock space and Wiener chaos expansion
- 11.5.1. Ornstein-Uhlenbeck operator
- 11.6. Applications
- 11.6.1. Convexity adjustment
- 11.6.2. Sensitivities
- 11.6.3. Local volatility of stochastic volatility models
- 11.7. Problems
- 12. Portfolio Optimization and Bellman-Hamilton-Jacobi Equation
- 12.1. Introduction
- 12.2. Hedging in an incomplete market
- 12.3. The feedback effect of hedging on price
- 12.4. Non-linear Black-Scholes PDE
- 12.5. Optimized portfolio of a large trader
- A. Saddle-Point Method
- B. Monte-Carlo Methods and Hopf Algebra
- B.1. Introduction
- B.1.1. Monte Carlo and Quasi Monte Carlo
- B.1.2. Discretization schemes
- B.1.3. Taylor-Stratonovich expansion
- B.2. Algebraic Setting
- B.2.1. Hopf algebra
- B.2.2. Chen series
- B.3. Yamato's theorem
- References
- Index