Optimization techniques for solving complex problems /
Saved in:
Imprint: | Hoboken, N.J. : John Wiley & Sons, c2009. |
---|---|
Description: | xxi, 476 p. : ill. ; 25 cm. |
Language: | English |
Series: | Wiley series on parallel and distributed computing |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/7691005 |
Table of Contents:
- Contributors
- Foreword
- Preface
- Part I. Methodologies for Complex Problem Solving
- 1. Generating Automatic Projections by Means of Genetic Programming
- 1.1. Introduction
- 1.2. Background
- 1.3. Domains
- 1.4. Algorithmic Proposal
- 1.5. Experimental Analysis
- 1.6. Conclusions
- References
- 2. Neural Lazy Local Learning
- 2.1. Introduction
- 2.2. Lazy Radial Basis Neural Networks
- 2.3. Experimental Analysis
- 2.4. Conclusions
- References
- 3. Optimization Using Genetic Algorithms with Micropopulations
- 3.1. Introduction
- 3.2. Algorithmic Proposal
- 3.3. Experimental Analysis: The Rastrigin Function
- 3.4. Conclusions
- References
- 4. Analyzing Parallel Cellular Genetic Algorithms
- 4.1. Introduction
- 4.2. Cellular Genetic Algorithms
- 4.3. Parallel Models for cGAs
- 4.4. Brief Survey of Parallel cGAs
- 4.5. Experimental Analysis
- 4.6. Conclusions
- References
- 5. Evaluating New Advanced Multiobjective Metaheuristics
- 5.1. Introduction
- 5.2. Background
- 5.3. Description of the Metaheuristics
- 5.4. Experimental Methodology
- 5.5. Experimental Analysis
- 5.6. Conclusions
- References
- 6. Canonical Metaheuristics for Dynamic Optimization Problems
- 6.1. Introduction
- 6.2. Dynamic Optimization Problems
- 6.3. Canonical MHs for DOPs
- 6.4. Benchmarks
- 6.5. Metrics
- 6.6. Conclusions
- References
- 7. Solving Constrained Optimization Problems with Hybrid Evolutionary Algorithms
- 7.1. Introduction
- 7.2. Strategies for Solving CCOPs with HEAs
- 7.3. Study Cases
- 7.4. Conclusions
- References
- 8. Optimization of Time Series Using Parallel, Adaptive, and Neural Techniques
- 8.1. Introduction
- 8.2. Time Series Identification
- 8.3. Optimization Problem
- 8.4. Algorithmic Proposal
- 8.5. Experimental Analysis
- 8.6. Conclusions
- References
- 9. Using Reconfigurable Computing for the Optimization of Cryptographic Algorithms
- 9.1. Introduction
- 9.2. Description of the Cryptographic Algorithms
- 9.3. Implementation Proposal
- 9.4. Expermental Analysis
- 9.5. Conclusions
- References
- 10. Genetic Algorithms, Parallelism, and Reconfigurable Hardware
- 10.1. Introduction
- 10.2. State of the Art
- 10.3. FPGA Problem Description and Solution
- 10.4. Algorithmic Proposal
- 10.5. Experimental Analysis
- 10.6. Conclusions
- References
- 11. Divide and Conquer: Advanced Techniques
- 11.1. Introduction
- 11.2. Algorithm of the Skeleton
- 11.3. Experimental Analysis
- 11.4. Conclusions
- References
- 12. Tools for Tree Searches: Branch-and-Bound and A* Algorithms
- 12.1. Introduction
- 12.2. Background
- 12.3. Algorithmic Skeleton for Tree Searches
- 12.4. Experimentation Methodology
- 12.5. Experimental Results
- 12.6. Conclusions
- References
- 13. Tools for Tree Searches: Dynamic Programming
- 13.1. Introduction
- 13.2. Top-Down Approach
- 13.3. Bottom-Up Approach
- 13.4. Automata Theory and Dynamic Programming
- 13.5. Parallel Algorithms
- 13.6. Dynamic Programming Heuristics
- 13.7. Conclusions
- References
- Part II. Applications
- 14. Automatic Search of Behavior Strategies in Auctions
- 14.1. Introduction
- 14.2. Evolutionary Techniques in Auctions
- 14.3. Theoretical Framework: The Ausubel Auction
- 14.4. Algorithmic Proposal
- 14.5. Experimental Analysis
- 14.6. Conclusions
- References
- 15. Evolving Rules for Local Time Series Prediction
- 15.1. Introduction
- 15.2. Evolutionary Algorithms for Generating Prediction Rules
- 15.3. Experimental Methodology
- 15.4. Experiments
- 15.5. Conclusions
- References
- 16. Metaheuristics in Bioinformatics: DNA Sequencing and Reconstruction
- 16.1. Introduction
- 16.2. Metaheuristics and Bioinformatics
- 16.3. DNA Fragment Assembly Problem
- 16.4. Shortest Common Supersequence Problem
- 16.5. Conclusions
- References
- 17. Optimal Location of Antennas in Telecommunication Networks
- 17.1. Introduction
- 17.2. State of the Art
- 17.3. Radio Network Design Problem
- 17.4. Optimization Algorithms
- 17.5. Basic Problems
- 17.6. Advanced Problem
- 17.7. Conclusions
- References
- 18. Optimization of Image-Processing Algorithms Using FPGAs
- 18.1. Introduction
- 18.2. Background
- 18.3. Main Features of FPGA-Based Image Processing
- 18.4. Advanced Details
- 18.5. Experimental Analysis: Software Versus FPGA
- 18.6. Conclusions
- References
- 19. Application of Cellular Automata Algorithms to the Parallel Simulation of Laser Dynamics
- 19.1. Introduction
- 19.2. Background
- 19.3. Laser Dynamics Problem
- 19.4. Algorithmic Proposal
- 19.5. Experimental Analysis
- 19.6. Parallel Implementation of the Algorithm
- 19.7. Conclusions
- References
- 20. Dense Stereo Disparity from an Artificial Life Standpoint
- 20.1. Introduction
- 20.2. Infection Algorithm with an Evolutionary Approach
- 20.3. Experimental Analysis
- 20.4. Conclusions
- References
- 21. Exact, Metaheuristic, and Hybrid Approaches to Multidimensional Knapsack Problems
- 21.1. Introduction
- 21.2. Multidimensional Knapsack Problem
- 21.3. Hybrid Models
- 21.4. Experimental Analysis
- 21.5. Conclusions
- References
- 22. Greedy Seeding and Problem-Specific Operators for GAs Solution of Strip Packing Problems
- 22.1. Introduction
- 22.2. Background
- 22.3. Hybrid GA for the 2SPP
- 22.4. Genetic Operators for Solving the 2SPP
- 22.5. Initial Seeding
- 22.6. Implementation of the Algorithms
- 22.7. Experimental Analysis
- 22.8. Conclusions
- References
- 23. Solving the KCT Problem: Large-Scale Neighborhood Search and Solution Merging
- 23.1. Introduction
- 23.2. Hybrid Algorithms for the KCT Problem
- 23.3. Experimental Analysis
- 23.4. Conclusions
- References
- 24. Experimental Study of GA-Based Schedulers in Dynamic Distributed Computing Environments
- 24.1. Introduction
- 24.2. Related Work
- 24.3. Independent Job Scheduling Problem
- 24.4. Genetic Algorithms for Scheduling in Grid Systems
- 24.5. Grid Simulator
- 24.6. Interface for Using a GA-Based Scheduler with the Grid Simulator
- 24.7. Experimental Analysis
- 24.8. Conclusions
- References
- 25. Remote Optimization Service
- 25.1. Introduction
- 25.2. Background and State of the Art
- 25.3. ROS Architecture
- 25.4. Information Exchange in ROS
- 25.5. XML in ROS
- 25.6. Wrappers
- 25.7. Evaluation of ROS
- 25.8. Conclusions
- References
- 26. Remote Services for Advanced Problem Optimization
- 26.1. Introduction
- 26.2. SIRVA
- 26.3. MOSET and TIDESI
- 26.4. ABACUS
- References
- Index